

The Multi-angle Polarimeter

Kirk Knobelspiesse – Instrument scientist Dustyn Strosnider – Instrument manager Bill Cook – Passive instrument systems engineering lead Reed Espinosa – Aerosol algorithm lead Matt Lebsock – Cloud algorithm lead and the rest of the AOS Project and Science team May 2023

AOS Reviewed – Not Subject to Export Control

Decadal Survey Recommendations

Targeted Observable	Science/Applications Summary	Candidate Measurement Approach
Aerosols	Aerosol properties, aerosol vertical profiles, and cloud properties to understand their effects on climate and air quality Mentioned together	Backscatter lidar and multichannel/multiangle/ polarization imaging radiometer flown together on the same platform
Clouds, Convection, and Precipitation	Coupled cloud-precipitation state and dynamics for monitoring global hydrological cycle and understanding contributing processes including cloud feedback	Dual-frequency radar, with multifrequency passive microwave and sub-mm radiometer

CONSTINUES STUDY EXPORT

National Academies of Sciences, Engineering, and Medicine 2018

Fargeted	Added Measurement
-----------------	-------------------

Observable	Considerations	Notes
Aerosols	Ocean Ecosystem capability	HSRL desirable but possibly beyond cost cap
Clouds, Convection and Precipitation	Diurnal cycle characterization assisted by Program of Record (PoR)	Minimum capability of single frequency radar with dynamics (Doppler or proxy)

Multi-angle Polarimeter Concept

Decadal survey + ACCP studies recommended:

Passive radiometer with measurement characteristics

- multi-spectral (UV-VIS-NIR-SWIR)
- multi-angle / hyper-angle (10-60 views per pixel)
- accurate polarization sensitivity

Animation through multi-angle views

Addresses climate, weather and air quality objectives with measurements of **cloud** and **aerosol** properties

HARP Cubesat RGB imagery, West Africa with

Not shown are hyperangle and polarimetric data. The AOS polarimeter would have UV, SWIR and better spatial resolution. From: https://esi.umbc.edu/hyper-angular-rainbow-polarimeter/

History of Multi-Angle Polarimeters

From:

Dubovik et al. : Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives, J. Quant. Spectrosc. Ra., 224, 474 - 511, <u>https://doi.org/10.1016/j.jqsrt.2018.11.024</u>, 2019.

Advancement of POLarimetric Observations (APOLO-2022) conference presentations: <u>https://pikesmeetings.wixsite.com/apolo-2022</u>

Multi-angle polarimeters in LEO

POLDER-3 – arguably most successful polarimeter to date.
APS/Glory – NASA's attempt at a polarimeter ended in a launch failure
PACE/HARP2 and PACE/SPEXone – 'do no harm' instruments, proof of concept
HARP-Cubesat and MAIA – US instruments that (did/will) lack global coverage

AOS will improve upon POLDER with better cloud measurements (SWIR channels and polarimetric approach), order of magnitude better accuracy and UV for aerosols, and parallax-based feature height detection capability. It will be NASA's contribution to global measurement of aerosols and clouds.

KDP-A Architecture

The original ACCP Architecture called for a polarimeter in AOS-P and AOS-I

The AOS-I polarimeter was descoped prior to MCR along with other instruments

Some AOS-P polarimeter requirements (SWIR channels) were strengthened to enable a portion of measurements lost with the SW Spectrometer descope

AOS intends a procurement through open competition

(Current) Requirements

Summary of instrument requirements:

Spatial resolution of 500m at **nadir**, cross track swath of 300km Total uncertainty: radiometric < 3%, Degree of Linear Polarization (DoLP) < 0.005

Science driver	Wavelength range	# of	# of viewing	
	5	bands	angles per pixel	
Aerosol	UV: 350 – 390 nm	1	10	
Aerosol, bi-spectral cloud	VIS-NIR: 410 – 750 nm	2	10	
Cloudbow cloud retrieval	Hyperangle: 670 – 870 nm	1	60	
Water vapor measurement	NIR: 900 – 960nm	1	10	
SWIR cirrus cloud detection	SWIR: 1350 – 1400nm	1	10	
Aerosol, bi-spectral cloud	VNIR-SWIR:870 – 1570 nm	3	10	

Multi-angle, polarimetric measurements for all channels

Multiple retrieval categories

Aerosol: multiangle, polarimetric UV-VIS-NIR observations to determine aerosol optical depth and aerosol microphysical properties.

Bi-spectral Cloud: pairs of NIR/SWIR channels to determine **cloud optical depth** and **droplet effective radius**

Cloudbow Cloud: hyperangle polarimetric VIS/NIR observations to determine **cloud optical depth** and **droplet effective radius and variance**. Water vapor channel to characterize water vapor profile applied to correct water vapor response in other channels **Cirrus cloud detection** channel in strong water absorption feature to detect thin cirrus clouds that impact other retrievals

Thresholds indicated by [brackets]

Geophysical Variable Requirements Science **Daytime measurements of:** Geophysical Objectives Conditions Variable GV5: cloud droplet size **O1.** Low Daytime, low cloud (<5km top) Uncertainty: 50% for GV7: optical depth Clouds GV5. Cloud precipitating clouds, 20% droplet otherwise O2. High effective Range: optical depth > 2, Clouds radius effective radius 5-30um 01, 06, 08 Resolution: 500m [1km] nadir O4. Cold at 500m nadir resolution and 300km swath Swath: 300km [100km] clouds and precipitation (baseline) - important for 5 science objectives O6. Aerosol removal, vertical GV7. Cloud Daytime redistribution. The polarimeter has two independent ways to **Uncertainty:** max(0.3, 50%) optical and depth **Range:** 0.3 < optical depth < processing 01, 02, 04, 50 determine these properties; these products have 06, 08 Resolution: 1km nadir **O8.** Aerosol different vertical sensitivity indirect effect

* Projected performance is for industry study instruments MegaHARP-4 and MegaHARP-2; polarimeter contract will be awarded in Phase B

Bispectral (Nakajima-King) heritage algorithms use NIR/SWIR spectral pairs

Lookup table for liquid phase cloud

Figure courtesy of Kerry Meyer, NASA GSFC

Details:

Sensitive to body of cloud , assumes droplet effective variance, no aerosols above clouds

Separate tables for liquid, ice phase clouds

Original concept had a longer wavelength SWIR channel, but study contract indicated this was infeasible

The Rainbow method uses multi-angle VIS polarization

This is also a good way to determine cloud phase

Pre-Decisional – AOS is in Phase A and NASA makes no commitments on the final design of the mission or instruments

g

Polarimeter Traceability Matrix: Aerosols

Thresholds indicated by [brackets]

C. i.e.	Geophysical Variable Requirements			Measurements	Instrument		
Objectives	Geophysical Variable	Conditions	Observables	Requir Daytime measuren	nents of	Projected Performance*	
O3. Convective Processes O5. Aerosol attribution and air quality	GV12. Aerosol column optical depth (UV, VIS, NIR) O3, O5, O6, O7, O8	Daytime, clear sky, global [ocean] [UV] VIS-NIR Uncertainty: 0.03+0.1*AOD Resolution: 0.5 [1] km nadir Swath: 300 [100] km	Ae Ae	Aerosol optical dept erosol absorption optica rosol fine mode effectiv	h (GV12) depth (e radius (ical prop	GV13) (GV14) erties	
O6. Aerosol removal, vertical redistribution, and processing	GV13. Aerosol column aerosol absorption optical depth (UV, VIS) O5, O6, O7, O8	Daytime, clear sky, global [ocean] [UV] VIS Uncertainty: max(0.003,50%) [max(0.005, 50%)] Resolution: 0.5 [1] km nadir Swath: 300 [100] km	Passive, multi- angle, total and polarimetric rac at 500 [UV] VIS-NIR- SWIR	Om resolution and 300kr	Swath: 300km n swath (MegaHARP-4: 394km Exceeds baseline (baseline) Exceeds baseline	
O7. Aerosol direct effect and absorption O8. Aerosol indirect effect	GV14. Aerosol column fine-mode effective radius O5, O6, O7, O8	Daytime, clear sky, global [ocean] Uncertainty: max(0.05,0.1*(0.1 ^{AOD})) μm Resolution: 0.5 [1] km nadir Swath: 300 [100] km		The angles important for 5 science 57° along track Meets/exceeds baseline	e objectiv 3% radiometric, 0.005 DoLP polarimetric	/es 3% radiometric, 0.003 DoLP polarimetric Meets/exceeds baseline	

* Projected performance is for industry study instruments MegaHARP-4 and MegaHARP-2; polarimeter contract will be awarded in Phase-B

Polarimeter Traceability Matrix: Aerosols

Cost function

Simultaneous retrieval of GV's with radiative transfer model optimization

Aerosol optical depth (GV12)

Aerosol absorption optical depth (GV13)

Aerosol fine mode effective radius (GV14)

+other aerosol microphysical properties

Radiative transfer simulations are iteratively adjusted until the simulation – measurement 'cost function' is minimized

Benefit from PACE algorithm development

Example Algorithms:

GRASP: 10.5194/essd-12-3573-2020 MAPP: 10.1364/AO.57.002394 RemoTAP: 10.5194/amt-2019-287 fastMAPOL: 10.5194/amt-2020-507

Polarimeter + Lidar Aerosol Synergy

Summary of RFI responses

0.30%

There was a robust response to early RFIs, but many did not meet needs.

Green: meets baseline requirements

Yellow: Doesn't meet baseline, threshold ok

Orange: Doesn't meet threshold

EPIC MAP

Instrument	Class	Mass (kg)	Avg. Power (W) *pk	Dimensions (m)	Orbit avg. data rate (Mbps)	Polarized UV channels	Polarized VIS- NIR channels	Polarized SWIR channels	Hyperang. channels	# views	Swath	Resolution (km)	Rad. Unc.	DoLP Unc.
							ACCP Study							
S-Polar01	С	65 (CBE) 80 (MEV)	48	0.7 x 0.9 x 0.5	depends on # targets	-	2	1	-	mechanicall y gimballed	160	0.132 x 0.124	4%-6%	0.50%
S-Polar02 (a)	С	122	167*	1.5 x 0.9 x 0.9	6.6	-	2	1	-	5	160	0.132 x 0.124	4%-6%	0.50%
S-Polar02 (b)	D	10/camer a + 64	15/camera *	6U for cameras + 0.7x0.9x0.5	1.5/camera	-	2	1	-	5	160	0.132 x 0.124	4%-6%	0.50%
S-Polar03	D	256	400	0.90 x 0.68 x 0.96	20	24	196	-	-	1	300	0.175 x 0.500	5%	0.50%
S-Polar04 (a)	D	6	23	0.10 x 0.20 x 0.17	26.7	2	4	4	1	10 (60)	1130	1	3%	0.50%
S-Polar04 (b)		21	23	0.49 x 0.24 x 0.49	26.7	2	4	4	1	10 (60)	1130	1	3%	0.50%
S-Polar04 (c)	D		39	0.79 x 0.66 x 0.39	34.6	3	6	6	1	10 (60)	1130	1	3%	0.50%
S-Polar04 (d)	D?	65	Ba	sis for	ACC	o stud	dv 🖳	6	1	10 (60)	1130	1	3%	0.50%
S-Polar05	D?	11 (CP5, 15 / nEV)	20	0.10 A 0.24 A 0.33		÷	30	-	-	5	100	2.3x2.7	2%	0.30%
S-Polar06		57.2 (MEV)	73	0.62 x 0.57 x 0.49	0.126	-	6	3	9	255	5.6	5.6	5%	0.20%
S-Polar07	D?	35	46	0.38 x 0.60 x 0.43	55	2	5	4	1	10 (60)	550	0.5	3%	0.50%
S-Polar08	D?	61	51	0.46 x 0.55 x 0.52	60	2	4	6	1	10 (60)	550	0.5	3%	0.50%
S-Polar09	D?	3	10	0.40 x 0.20 x 0.11 (optical)	0.15		4			3	3 x 120km	1	3%	0.30%
				incepts ir		/SDL p	olarimet	ter study	/ (as IN	/legaH	ARP4	, iviega	HAKF	'2) _
							Pre-Phase A							
Mega-HARP		35	69.2	0.58 x 0.40 x 0.44	55?	2	4	4	1	10 (60)	344	1?	3%	0.50%
HARP2-UVS		21	34.6	0.24 x 0.49 x 0.48	26.7?	1	4	4	1	10 (60)	861	1	3%	0.50%
EHARP						2	6	7	1	10 (60)			3%	0.50%

Instrument Study with Partners UMBC/SDL

MegaHARP-4 Spatial resolution baseline

MegaHARP-2 Spatial resolution threshold

Ability to meet requirements is otherwise identical Geophysical Variable horizontal resolution may vary MegaHARP uses wide field of view optics, prism based amplitude polarization separation, and linear stripe filters

See: Martins, et al. IEEE IGARSS 2018, 6304--6307.

MegaHARP heritage

Heritage: PACE/HARP2 (launch 2024), HARP-Cubesat (recent de-orbit)

Compared to MegaHARP, these do not have SWIR, have coarser spatial resolution, and less sophisticated calibration mechanisms and less accuracy.

HARP CubeSat

January 2020 – April 2022 4km resolution No onboard calibrator Limited downlink bandwidth, coverage Plankton, Aerosol, Cloud, ocean Ecosystem (PACE)

pace.gsfc.nasa.gov Launch in 2024

HARP2 is a contributed 'do no harm' instrument

Conclusions

The AOS-P polarimeter will support all eight science objectives by making daytime, passive, measurements of cloud and aerosol optical properties in a swath.

RFI material and a pre-phase A study demonstrate the likelihood of **at least one viable RFP response** that can meet requirements. Descope/costing options are included.

The polarimeter, with lidar synergy, will **enable first ever observations** of aerosol property profiles, cloud and aerosol processes and more.

Proposed designs improve upon heritage with better accuracy, spatial resolution and spectral range (UV through SWIR). Overall budget and SWaP is relatively small compared to active instruments.

HARP Cubesat RGB imagery, West Africa with Saharan dust, glint, clouds 2020 / 06 / 13

Extra material

Thresholds indicated by [brackets]

Science	Geophysical Variable Requirements Geophysical Variable Conditions		Observables		Measurements		Instrument	
Objectives					Requirements	Projected Performance*	Requirements	Projected Performance*
O1. Low Clouds	GV5. Cloud	Daytime , low cloud (<5km top) Uncertainty: 50% for precipitating clouds, 20%	Passive bi-	ethod	Spectral: 1 NIR, 1 SWIR at 1600 nm	UV-VIS: 380, 410, 550, 660 NIR-SWIR: 870, 940, 1230, 1380, 1570 Exceeds baseline	Resolution: 500m [1km] at nadir	MegaHARP-4: 0.5km Meets baseline MegaHARP-2: 1km Meets threshold
O2. High Clouds O4. Cold	droplet effective radius 01, 06, 08	droplet effective radiusotherwise Range: optical depth > 2, effective radius 5-30μm O1, O6, O8Resolution: 500m [1km] nadir Swath: 300km [100km]	spectral (NIR, SWIR) radiance pairs	pectral R, SWIR) adiance pairs	View angles: 1	10 view angles within ± 57° along track for all channels except 660nm,	Swath: 300km [100km]	MegaHARP-4: 394km Exceeds baseline MegaHARP-2: 1008km Exceeds baseline
clouds and precipitation				(naur)	exceeds baseline	Uncertainty: 3% radiometric	3% radiometric Meets baseline	
O6. Aerosol removal, vertical	GV7. Cloud	Passive		Passive	Spectral: 1 NIR hyper-angle	NIR hyperangle: 660 meets baseline	Resolution: 500m [1km] at nadir	MegaHARP-4: 0.5km Meets baseline MegaHARP-2: 1km Meets threshold
redistribution, and processing	optical depth 01, 02, 04, 06, 08	Uncertainty: max(0.3, 50%) Range: 0.3 < optical depth < 50 Resolution: 1km nadir	VIS polarization in one channel	ainbow met	View angles: 60	60 view angles within ± 57° along	Swath: 300km [100km]	MegaHARP-4: 394km Exceeds baseline MegaHARP-2: 1008km Exceeds baseline
indirect effect				~	track	meets baseline	Uncertainty: 3% radiometric, 0.005 DoLP polarimetric	3% radiometric, 0.003 DoLP polarimetric Meets/exceeds baseline

* Projected performance is for industry study instruments MegaHARP-4 and MegaHARP-2; polarimeter contract will be awarded in Phase B

Polarimeter Traceability Matrix: Aerosols

Thresholds indicated by [brackets]

Science	Geophysical Variable Requirements			Γ	Aeasurements	Instrument	
Objectives	Geophysical Variable	Conditions	Observables	Requirements	Projected Performance*	Requirements	Projected Performance*
O3. Convective Processes O5. Aerosol attribution and air quality	GV12. Aerosol column optical depth (UV, VIS, NIR) O3, O5, O6, O7, O8	Daytime, clear sky, global [ocean] [UV] VIS-NIR Uncertainty: 0.03+0.1*AOD Resolution: 0.5 [1] km nadir Swath: 300 [100] km		Spectral: 1 UV, 3 VIS-NIR, 3[2] SWIR to 2250 [1600] nm	UV-VIS: 380, 410, 550, 660 NIR-SWIR: 870, 940, 1230, 1380, 1570 VIS-NIR, 3[2] WIR to 2250 [1600] nm SWIR meets baseline in # of		MegaHARP-4: 0.5km Meets baseline MegaHARP-2: 1km Meets threshold
O6. Aerosol removal, vertical redistribution, and processing	GV13. Aerosol column aerosol absorption optical depth (UV, VIS) O5, O6, O7, O8	Daytime, clear sky, global [ocean] [UV] VIS Uncertainty: max(0.003,50%) [max(0.005, 50%)] Resolution: 0.5 [1] km nadir Swath: 300 [100] km	Passive, multi- angle, total and polarimetric radiance for [UV] VIS-NIR- SWIR		channels, threshold in range	Swath: 300km [100km]	MegaHARP-4: 394km Exceeds baseline MegaHARP-2: 1008km Exceeds baseline
O7. Aerosol direct effect and absorption O8. Aerosol indirect effect	GV14. Aerosol column fine-mode effective radius O5, O6, O7, O8	Daytime, clear sky, global [ocean] Uncertainty: max(0.05,0.1*(0.1 ^{AOD})) μm Resolution: 0.5 [1] km nadir Swath: 300 [100] km		View angles: 10 [5] within ± 57° along track	along track for all channels except 670, which has 60 Meets/exceeds baseline	Uncertainty: 3% radiometric, 0.005 DoLP polarimetric	3% radiometric, 0.003 DoLP polarimetric Meets/exceeds baseline

* Projected performance is for industry study instruments MegaHARP-4 and MegaHARP-2; polarimeter contract will be awarded in Phase-B