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Motivation

* Most cloud information from passive remote
sensing instruments is limited to the tops of
clouds, or the top of the topmost cloud
layers.

e But information on what’s happening closer
to the surface is valuable for aviation and
other real-time applications

» Using CloudSat/CALIPSO data, CIRA has been
developing cloud products to estimate the
vertical distribution of clouds from
operational, passive satellite observations




V.

Outline

Cloud Vertical Structure
* Why is this important to operational users, and how do measure
it?

Cloud Base / Vertical Structure from Passive Sensors
 Animproved cloud base algorithm
e Applications to ABI and VIIRS, including customizable cloud vertical
cross sections

A machine learning application to improve detection of difficult-to-
retrieve clouds

Towards the future
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Why is this important, and

how do we measure it?
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@l Kﬁ‘\ Aviation and Cloud Base

* Cloud base / ceiling is particularly important
for aviation, especially for general aviation

* Instrument Flight Rules (IFR)

-

o MOU ntain ObSCU ration Afifa Afrin (CC BY-SA 3.0)

* Aerodrome forecasting

* How can we operationally
measure/infer cloud base?

Aviation Weather Center abdallahh (CC BY-SA 2.0)
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We can get cloud bases from ceilometers, where available

FAA/NWS Ceilometer Network

oty 3%

7 Alaska
_ r‘f’{’;\ ‘.-—"?;..

Pros: High vertical and temporal
resolution, automated obs
Con: Limited distribution and
representativeness

Jk047



@l “‘ Cloud Vertical Structure for Research

* Ground-based millimeter wavelength radars; lidars — ARM Sites, MPLNET

* CloudSat and CALIPSO (future AOS / EarthCARE)

Pros: High vertical resolution, high temporal resolution (ground sites)
Con: Low temporal resolution (C/C), lack of global applicability; costly 7




We are all familiar with using passive satellite imagery to locate clouds in time and space... but by
space we usually mean horizontal space.

Chan 13 (10.35 um)

What does the vertical profile of cloudiness look like at thei\(locations?

By using a combination of different channels, combined with surface observations, we might make some
guesses — but can we do this operationally?




Another option is to appeal to high resolution forecast
models (NWP)...
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In practice, forecasters often use relative humidity (RH) from
NWP as a proxy for cloud cover...




... back to satellites!

» Satellites sensors like the GOES Advanced Baseline Imager (ABI)
or JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) have
some distinct advantages...

* ABI: 10 minute CONUS refresh rate; 1 minute (or 30
seconds) for meso sectors

* VIIRS: Frequent monitoring for high latitude regions
* BUT these are passive sensors...
* Most information content is near cloud top
* Multilayer clouds obscure information about low levels

* Can we use them to say something useful about cloud vertical
structure?




Cloud Base / Vertlcal Structure
from Passwe Sensors

NASA



Cloud Top and Base

e Cloud top height is a key
operational product produced by
the NOAA Enterprise Cloud product
suite.

* OQOur focus has been on the two
circles at left feature cloud base
height (CBH) and cloud geometric
thickness (CGT)...

e ...and thisis where
CloudSat/CALIPSO have been
instrumental

Enterprise Cloud Product Package
From 2020 EPS-SG STAR Product Requirements Review by A. Heidinger
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@&IRA  The“old” VIIRS CBH algorithm

Credit: Curtis Seaman

Originally, VIIRS utilized a cloud base height (CBH) algorithm for liquid clouds as follows:

Red variables from upstream retrievals
, o LWP 21pr1, _ ,
CBH = CTH — (f LWP = ——— LWC is pre-defined average value based on
LWC 3 cloud type; cloud type comes from upstream
retrieval

(*) Ice retrieval is similar, but assumes IWC is function of temperature

The fact that LWC was a mean dependent on cloud type was extremely problematic

Seaman et al. (2017) used matchups between JPSS and CloudSat (overlap ~4.5 hours every 2-3 days,
resulting in 11-12 overlap periods per month) to evaluate the performance of the algorithm
described above

e Daytime only

* Excluding precipitation

* Require CBH,CTH above 1 km
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The “Old” CBH algorithm

Credit: Curtis Seaman
Seaman et al. (2017)

CloudSat (gray)
VIIRS cloud bounds (colors)

RMSE ~ 2.7 km
r’=0.452
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“New” CBH algorithm

* We developed a cloud base height / cloud geometric thickness algorithm using NASA A-Train
satellite data, and then applied it to VIIRS and then ABI (Noh et al. 2017, JTECH)
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CBH (*) = CTH — AZ (CGT; Cloud Geometric Thickness)
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(*) Special considerations for optically thin clouds and optically thick clouds
No more cloud type dependency! 15
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“New” CBH algorithm

* Having developed these coefficients, we can now apply them to any data source that provides
CTH and CWP

* Optimal for single layers — more on this later

* Retrieving geometric thickness means a better Cloud Cover Layers product:

" “Cloud Cover Layers” (CCL)

Old Additional For aviation users
classifications classifications TOA
High (H) R S kit
; o H+M Layer 4 -
L 350 hPa y 18 kft
Mid (M) . Lix K HeM+L Layer 3 10 kit
Layer 2
T00hPa . M+ L Kf
Low (L) Layer 1 oKt
SFC
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Cloud Base Height:

ARM Ceilometer / MPL
VS.
VIIRS

Cloud Base Height:

ARM SGP KAZR radar
VS.
ABI

ASI CBH Retrieval (km)

2 4 : 1
ARN-SGP CBH Radar Observation (km)

Radar Coservation (km)

Samples where VIIRS cloud
base heights are within 2
km of..

Ceilometer / MPL:

* 89% / 82% (NSA)
* 85% / 63% (SGP)

KAZR radar:

* 80% (day) / 70% (night)

Yoo-Jeong Noh
Brandon Daub 17



\f;l h\Lt Cloud Base Validation

CBH comparison: “in-spec” results for VIIRS
relative to CloudSat/CALIPSO

Legacy algorithm 2.7 km 0.452
New algorithm 1.7 km 0.791
CloudSat (gray) VIIRS cloud bounds (colors)
Legacy (before CloudSat/CALIPSO) New results
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G’;l h\Lt Cloud Base /| Geometric Thickness

GOES-16 ABI
After addition of CGT changes —

-'-?' “New with CGT

TR
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G’;l h\Lt Cloud Base /| Geometric Thickness

* Now applicable to polar and geostationary satellite sensors (JPSS VIIRS and GOES ABI, AH], ...)
* Real-time display for the products available in CIRA’s SLIDER - http://rammb-slider.cira.colostate.edu
* May be particularly useful for oceanic flight routing when combined with GLM

GOES-16 ABI GeoColor
with GLM overlay (L2 group energy) Cloud Cover Layers

8N Cloud LSS

1806 — 2106 UTC (per 15 min) 08 April 2019
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http://rammb-slider.cira.colostate.edu/

AWIPS 1l Display

< 5 kft

10-18 kft

5-10 kft

18-24 kft

Debra Molenar
Ty Higginbotham
Amanda Terborg

Layer cloud fractions improved with Cloud Base in AWIPS Il at the Aviation Weather Center

Provisional review this Spring
Current work: Development of volume browser display
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* Working with the JPSS Aviation Initiative, we /' ok Eserpine oud podcts
have developed real-time VIIRS-based cloud s rabainbere pulormed
vertical cross sections for Alaska

Goal is to enable production of an “active
sensor-like” cloud mask between arbitrary
locations

o 0" w11 it @ OO0 £ serten’ wachion
N AN pf e SEETATeSTY AeGhAD meton

Zachary Perras

* "Aviation is critical for health and safety in remote
regions of Alaska, and to economy

* large n'fMeF of aircraft based in AK!




Q"l A Aviation Cross Sections: Alaska

https://aviation.cira.colostate.edu

Custom Flight Path

Please Note; Th an eape  product [vee diacliaimer

(Click at right for demo)

Chich on each ot 2long your Thght Dath, o Select an Arport from the Srop-Sown e then cick “Confirm Wayponts® and
B "Corerate Cross-Section” 1o germrale & cross-secton for your Sight path. If you noed 20 start owver, chck “Clear A"

= Show: 0O g B Tutulence

e "Active sensor-like” cloud
vertical cross sections...

Did you knew? You can cick this map 10 add wayponts!

* .. without the active sensors! (*) Il B

(*) but impossible w/o them!

* Let’s take a tour...

Leigh Cheatwood-Harris
Mattie Niznik
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https://aviation.cira.colostate.edu/

Aviation Cross Sections: CONUS

* Building on the success of our Alaska (VIIRS) product, and supporting user requests from West Coast
WFOs, we are now testing a CONUS, ABI-based cross section product

Custom Flight Path

At e i b e X o el e S T e Dt Your Flight Path and Cross-Section

Did you know? You can bookrmart this URL 10 save pour route; £ wil shmays show [he stest dats when pou walt!

i e

24



Aviation Cross Sections

Hurricane Fiona (*)
CIRA Aviation

'—-n—m- B Ow e

Custom Flight Path

25



User Engagement

* We have regular interactions with pilots (JPSS Aviation Initiative), many opportunities for feedback

o * Partner with Aviation Weather Center for product evaluation
2022 THER and forecaster interaction
SURVEY ’ * Featured in Aircraft Owners & Pilots Association ePilot
. & pilots Association newsletter and weekly program, as well as the annual survey,

receiving generally favorable marks

“I took off from FAI at 2300Z Sept 21 and landed at MRI
(Merrill Field Anchorage) at 0100Z Sept 22 (3 pm to 5
pm AKDT). I observed no ceiling from FAI to the Alaska
Range foothills, which is basically in agreement with the
cross sections. By the time I was over Totatlanika River
strip (9AK) I was under scattered to broken clouds with
bases around 5,500 ft MSL. Basically, I flew under a

w broken to overcast ceiling that was at about 5,500 to
Yom George ”% X 6,000 ft nearly all the way from McKinley Park (PAIN)
e Suglent mage Amanda Coml mpA to about Willow (PAOU). These bases were considerably
wn.‘ Sarvny Aoy ol TTNIO lower than shown on the cross sections for most of the

i Sy route...” (4K local pilot)
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User Engagement

* We have regular interactions with pilots (JPSS Aviation Initiative), many opportunities for feedback

| 5 Foodback for T image |
e * Partner with Aviation Weather Center for product evaluation
2022 THER and forecaster interaction
SURVEY < * Featured in Aircraft Owners & Pilots Association ePilot
s & Pilots Association newsletter and weekly program, as well as the annual survey,
7~ receiving generally favorable marks

* We have provided data for
multiple NTSB investigations

Small plane crash in Front
Range Colorado mountains



I1l. Machine Learning for Difficult
to Retrieve Clouds

Photo: Raffaello Tesi (Rutja76) (CC BY 2.5)


https://creativecommons.org/licenses/by/2.5/deed.en

@l k\[‘ Multilayer clouds

Multilayer cloud example (CIRA GeoColor)

e Multi-layer clouds are a problem for our current
scheme, which is expected to perform best for
single-layer clouds

* We are addressing this with machine learning, using
CloudSat/CALIPSO (matched to GOES-16 ABI) as
“truth”

Cloud Height Occurrence Frequency

0.4

Radar+Lidar m
CCLm ]

Fractional occurrence
o o
N w

o

0.0

N VNN RN NN
[9) \/>< Q\X Q\X \\X
Cateqory N
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Satellite model: NASA



@l k\‘j" CloudSat and GOES-16 ABI

Start with a matchup
dataset between GOES 16

Matchup characteristics:
ABI and CloudSat/CALIPSO

Parallax Error Ax (km) for 5 km High Cloud

* Oct 2018 —Jun 2019

NP o

Parallax correction applied

»
Dataset:
https://doi.org/10.7910/DVN/LPXYBL 30
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https://doi.org/10.7910/DVN/LPXYBL

| B &

@l Kﬁ“\ Algorithm Details

* Dataset:
e ~ 22 million radar profiles matched to

| Variable | Description and units Notes

parallax-corrected GOES-16 ABI Refl / T, ' |
) |nputs: R[Elfl.()l through | ABI Channel 01 through 06 N(mlltoci by cos(solar
| REFLOG visible reflectances zenith angle)

* ABI channels (all channels; common ratios and
channel differences also tested)
* Low-level relative humidity (serves as a low

| TBOT through TB16 ABI Channel 07 through 16
brightness temperature (K)

' RHoue Maximum RH between 650 and
cloud proxy) from NWP model 1000 hPa (%)
 Surface information ' RHiw RH at 150 hPa (%)
“u ”,
* TrUth : | Lat Lattude in (degrees north)
* Wasa low cloud presen-t-(p > 631 hPa) | Flag.s 0 indicates land or mix, 1=water Set o 1 where CLAVR-x
present? 0 or 1 ... classification problem ’ surface land_class is 0,5,6,7
b MOdElS (A” pixel—baSEd) | Flag oo e 0 indicates snow/ice free land Set to 1 if cither GFS snow
| surface, 1=snowice present depth or ice fraction are > 0

* Random forest | e e e ]
* 125 trees, max depth of 30

 Artificial neural network See Haynes et al. (2022), ITECH
* 3 fully connected layers

« 37 /77 /71 hidden units per layer
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Model Performance

Statistics for low cloud detection on ABI testing dataset

Probability of detection False alarm ratio Critical success index
PoD FAR CSlI

I A"_ ‘ i I ‘ _

Neural Network
Random Forest

A

ABI-detected cloud type

B | I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.0 0.2 0.4 0.6 0.8
Value

Value Value

* Machine learning models outperform original algorithm, especially for mixed “Cirrus”/”Overlapping”
* ANN and RF are remarkably similar in performance! 2



Original algorithm
(CCL)

Random Forest

Low Cloud Detection Prob of False Alarm
Algorithm Detection Ratio

cases

ABI
Cirrus

Original statistical (CCL)
Random Forest / ANN

Original statistical (CCL)
Random Forest / ANN

0.685
0.815 / 0.807

0.183
0.686 / 0.684

0.210
0.147 /0.137

0.114
0.219 / 0.206

Machine learning produces
greatest performance
enhancements relative to
original algorithm...

e ..in higher latitudes

e ..incases where
Enterprise/ABI

identifies “Cirrus”
(hidden low cloud /

multilayer)

33



Feature Importance

RF Feature Importance

{permutation-based)

cloud H,0 path |

cloud particle size
cirrus band
max RH in lowest layers

RF permutation-based feature importance
highlights importance of visible channels and RH,
which is used as a cloud proxy

* Thetop 3 channels (0.47, 2.2, 1.37 um) contain
information that is useful for differentiating cirrus
with and without underlying low cloud

Feature Dropout

1 -

N

The “Feature Dropout” plot demonstrates
how the CSI score changes as features are
cumulatively dropped as predictors, from
least to most important.

*  The curve is flat for up to ~10 features dropped!
*  Very little influence by surface-type flags
*  Demonstrates correlation between ABI channels.

*  Also suggests a simplified model will have similar
performance!

34



CCL with Machine Learning

CCL supplemented by RF on full disk

e : . o . . . Includes a “nighttime
CCL—-only Cloud Height CCL + RF Cloud Height version”  that excludes
2021/321 20:00 2021/321 20-00 channels 1 through 7 (vis)

P
"“_A / rom training
N
Before After
mach.ine (— += machine
learning learning

More deep clouds (purples)

Cw L v L+M H Mol H+M He+MeL Cw L M L+M H Hel HeM H+MeL
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Case studies suggest the machine learning
augmentation to CCL produces a much more
accurate representation of low cloud
presence

BT o e St w 2023 Example case study: upper-

level low exits Rockies

¥ b
. o
My '
- ~ / ] LR
N~
L
[aa,
al ‘
- l &
PR Y ¢
_ g
. ¥ Vi Y &
. e S s 4 These cellings are
: L -7 4 better represented
T S Y 5 - " s~ 4 with machine learning
el -~ : vl addition
- - A
: w? RNy
=1 g Seea o) STl

EDGA 2417552 AUTO 11003KT LOSM SCTO27 SCT032 OVCD3E 12/06 A3006 RMK A02 TOL170061 10120 20070
KSTXR 2417352 AUTO OS004KT 10SM OVCO21 09/05 AJ004 RME AD2

After
machine
learning

More deep clouds (purples)

CCL supplemented

machine

Case: 2022/05/24 18:10 UTC



CCL with Machine Learning

Example cross sections through ABI “Cirrus”

Magenta:
Lidar mask

Colors: Radar
reflectivity

CCL detection

CCL misses
cloud under
cirrus

CCL detection

supplemented

by our new
method

Improved
detection
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Translation for VIIRS

* Simplified “7 channel
model” for VIIRS

1.0
n' ]
n ' ‘ “ ‘\'.
~.08 I f
3 |
-8 |
¥ - - - | F - | Y
g - - - - :
c 04 . IR
g e | -’ - -
o g . e———— - | -
- - - - | =
- — - - o l | - Vit
0.0-55 i0 53 70 25
- 4
g ’
¥ .
E 6 | - SR B DR s e
- - N | . _— e
= ‘ p—
@ a l
b4 - ..' . ] . __
[ )
3 | — _-l, EE— - 2022/06/28 17:18 UTC
. 4 - - ﬁl* . . - e eew
VIIRS W f A K . eer.ies c—
v
&% 3 A 0 12 i

Wavelength (m) Wang et al. 2020 Cir L \ L+M H H+L H+M  He+M+L
Remote Sens. ’ Preliminary example - uncalibrated 38



* Using multi-output prediction, we can use the same inputs to
predict not only low cloud, but cloud in any layer of our choosing.

* This should ideally (and to a large extend does) preserve the
observed correlation between cloud layers.

Global Evaluation of multilayer Observed correlation between  Predicted correlation between

cloud mask cloud layers cloud layers
P(Layer 2 | Loyer 1): Obseryved P{Layer 2 | Layer 1): Predicled
Success Accuracy q
ratio
Topmost 0.86 0.89
layer !

(... intermediate layers not shown ...)

Bottommost 0.72 0.80 0.84
layer
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CWC Profiles

In progress: Can we predict
vertical profiles of cloud water
content from passive sensors?

Again, we appeal to active
sensors!

*  Multi-layer perceptron
* 4 fully-connected layers
with 64 units each
* LeakyRelU

*  Output
*  9-valued standardized
profile
*  Softmax

Credit: Chuck White et al.

Standardized
CloudSat Profile

VIIRS Bands (
Max/Min filters u» —
CFSR Temps :

Fraciiod of
Total Cloud Water
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CWC Profiles

Credit: Chuck White et al.

CloudSat

O i )
e Example preliminary
result

Cloud Water Content

Profile Number

For demonstration Neural Network
purposes, we assume we 4

know the actual cloud '

* .

thickness for these
single-layer cases

Altitude [km])

Cloud Water Content

Profile Number

Demonstrates a future
capability that may be
useful for aircraft icing

Cloud Type Lookup Table

¥

Altitude [km)

Cloud Water Content

Profile Number




OVERCAST

GOES-17

30ES-16

Metepsat-11

Meteosat-9

SIS - m Hima y—ari's
4 . . 3 |
.

* Working towards creation
of a global, 3D gridded
real-time cloud product

Blended Cloud Data
(Preliminary Global CTH)

e Combine GEO and LEO
sensors

* Compliments ISCCP-NG
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@i RA More Measurements

* We need more measurements AP mke a5
[US Jod}

to do more science! oy semetet RN Backscater Lidor Gl
812 . - w{ Ml(l wave Radiometer |

g Rediometer 4%

* Machine learning is data-
hungry. So is validation.

) CIOUdsat and CALIPSO have w-‘:‘:‘;ﬁ’u Jopp!mR:‘:’l! "
made this work possible. AOS, B vicouave Radiometer A8

EarthCARE, INCUS, and other 'W
missions of this type are
needed to continue it.

NASA
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Conclusions

* Active sensors have been instrumental in our work to derive 3D cloud profiles from passive
sensors

* 3D cloud products are now being produced in near real-time to benefit NOAA operational
users, particularly in aviation ‘ '

* Cloud cross-sections available from:
https://aviation.cira.colostate.edu for Alaska and
CONUS

* Machine-learning is used to augment our statistical
based cloud cover layer product (CONUS), accessible
via https://rammb-slider.cira.colostate.edu

Center



https://aviation.cira.colostate.edu/
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Conclusions

* CIRA is now working toward production of a global, real-time gridded 3D cloud product
combining geostationary and polar orbiter sensors

* We're interested in more than just cloud masks...
currently working on vertical cloud water content profiles as well.

See our new paper - remote sensing mMoP1
: in Remote Sensing
. 7 https://dx.doi.orq/10.3390/rs14215524 . A Framework for Satellite-Based 3D Cloud Data: An Overview

of the VIIRS Cloud Base Height Retrieval and User
Engagement for Aviation Applications

Tt fring Noos =0 halvn ML Mryres ", Steven B0 M VO Curtie | Seaman ', Andorn K Mebdinger
Peftrey Watnrkh *, Mark S Kadie . Matte Niowih ¥ snd Brandes | Dasd !

Thank you!

Photo: Raffaello Tesi (Rutja76) (CC BY 2.5)
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