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Motivation

• Most cloud information from passive remote 
sensing instruments is limited to the tops of 
clouds, or the top of the topmost cloud 
layers.

• But information on what’s happening closer 
to the surface is valuable for aviation and 
other real-time applications

• Using CloudSat/CALIPSO data, CIRA has been 
developing cloud products to estimate the 
vertical distribution of clouds from 
operational, passive satellite observations
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Outline

I. Cloud Vertical Structure
• Why is this important to operational users, and how do measure 

it?

II. Cloud Base / Vertical Structure from Passive Sensors
• An improved cloud base algorithm
• Applications to ABI and VIIRS, including customizable cloud vertical 

cross sections

III. A machine learning application to improve detection of difficult-to-
retrieve clouds

IV. Towards the future
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I. Cloud Vertical Structure

Why is this important, and 
how do we measure it?
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Aviation and Cloud Base

• Cloud base / ceiling is particularly important 
for aviation, especially for general aviation

• Instrument Flight Rules (IFR)

• Mountain obscuration

• Aerodrome forecasting

Afifa Afrin (CC BY-SA 3.0)

abdallahh (CC BY-SA 2.0)Aviation Weather Center

• How can we operationally
measure/infer cloud base?

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by/2.0
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Cloud Vertical Structure for Operations

• We can get cloud bases from ceilometers, where available

Jk047

FAA/NWS Ceilometer Network

Alaska

Hawaii
Pros: High vertical and temporal 

resolution, automated obs
Con: Limited distribution and 

representativeness
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Cloud Vertical Structure for Research

• Ground-based millimeter wavelength radars; lidars – ARM Sites, MPLNET

MMCR: Ka band radar (ARM)

Pros: High vertical resolution, high temporal resolution (ground sites)
Con: Low temporal resolution (C/C), lack of global applicability; costly

KAZR: KA band radar (ARM)
MPLNET (NASA)

• CloudSat and CALIPSO (future AOS / EarthCARE)

+

=
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Cloud Vertical Structure from Space

By using a combination of different channels, combined with surface observations, we might make some 
guesses – but can we do this operationally?

We are all familiar with using passive satellite imagery to locate clouds in time and space… but by 
space we usually mean horizontal space.

What does the vertical profile of cloudiness look like at the      locations?

Chan 2 (0.64 μm) Chan 13 (10.35 μm)

2018/06/21 22 UTC
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Cloud Vertical Structure from Models
Another option is to appeal to high resolution forecast 
models (NWP)…

2018/06/21 22 UTC F00 HRRR cloud mixing ratio

In practice, forecasters often use relative humidity (RH) from 
NWP as a proxy for cloud cover…
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… back to satellites!

• Satellites sensors like the GOES Advanced Baseline Imager (ABI) 
or JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) have 
some distinct advantages…

NASA

• BUT these are passive sensors…

• Most information content is near cloud top

• Multilayer clouds obscure information about low levels

• Can we use them to say something useful about cloud vertical 
structure? 

• VIIRS: Frequent monitoring for high latitude regions

• ABI: 10 minute CONUS refresh rate; 1 minute (or 30 
seconds) for meso sectors
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II. Cloud Base / Vertical Structure
from Passive Sensors

NASA
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Cloud Top and Base

• Cloud top height is a key 
operational product produced by 
the NOAA Enterprise Cloud product 
suite.

• Our focus has been on the two 
circles at left feature cloud base 
height (CBH) and cloud geometric 
thickness (CGT)…

• … and this is where 
CloudSat/CALIPSO have been 
instrumental
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The “Old” VIIRS CBH algorithm

• Originally, VIIRS utilized a cloud base height (CBH) algorithm for liquid clouds as follows:

Red variables from upstream retrievals

LWC is pre-defined average value based on 
cloud type; cloud type comes from upstream 
retrieval

• The fact that LWC was a mean dependent on cloud type was extremely problematic

• Seaman et al. (2017) used matchups between JPSS and CloudSat (overlap ∼4.5 hours every 2-3 days, 
resulting in 11-12 overlap periods per month) to evaluate the performance of the algorithm 
described above

• Daytime only
• Excluding precipitation
• Require CBH,CTH above 1 km

(*) Ice retrieval is similar, but assumes IWC is function of temperature

Credit: Curtis Seaman
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The “Old” CBH algorithm
Credit: Curtis Seaman

Seaman et al. (2017)

CloudSat (gray)
VIIRS cloud bounds (colors)

RMSE ∼ 2.7 km
r2 = 0. 452
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“New” CBH algorithm
• We developed a cloud base height / cloud geometric thickness algorithm using NASA A-Train 

satellite data, and then applied it to VIIRS and then ABI (Noh et al. 2017, JTECH)

CBH (*)  = CTH – ΔZ (CGT; Cloud Geometric Thickness)
where ΔZ = a(CWP)+b (a, b based on A-Train data)

(*) Special considerations for optically thin clouds and optically thick clouds
No more cloud type dependency!
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“New” CBH algorithm

• Having developed these coefficients, we can now apply them to any data source that provides 
CTH and CWP

• Retrieving geometric thickness means a better Cloud Cover Layers product:

“Cloud Cover Layers” (CCL)

• Optimal for single layers – more on this later



17

Cloud Base Validation

Cloud Base Height:

ARM Ceilometer / MPL
vs.

VIIRS

ARM NSA ARM SGP

Samples where VIIRS cloud 
base heights are within 2 
km of..

Ceilometer / MPL:
• 89% / 82% (NSA)
• 85% / 68% (SGP)

Yoo-Jeong Noh
Brandon Daub

Day NightCloud Base Height:

ARM SGP KAZR radar
vs.
ABI

KAZR radar:

• 80% (day) / 70% (night)
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Cloud Base Validation

Legacy (before CloudSat/CALIPSO) New results

CloudSat (gray)    VIIRS cloud bounds (colors)

CBH comparison: “in-spec” results for VIIRS
relative to CloudSat/CALIPSO

RMSE r2

Legacy algorithm 2.7 km 0.452

New algorithm 1.7 km 0.791
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Cloud Base / Geometric Thickness

GOES-16 ABI
Before addition of CGT changes

New with CGT

GOES-16 ABI
After addition of CGT changes
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Cloud Base / Geometric Thickness

GOES-16 ABI CONUS

1806 – 2106 UTC (per 15 min) 08 April 2019 

Cloud Layers

GOES-16 ABI GeoColor
with GLM overlay (L2 group energy) Cloud Cover Layers

• Now applicable to polar and geostationary satellite sensors (JPSS VIIRS and GOES ABI, AHI, …)
• Real-time display for the products available in CIRA’s SLIDER - http://rammb-slider.cira.colostate.edu
• May be particularly useful for oceanic flight routing when combined with GLM

http://rammb-slider.cira.colostate.edu/
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AWIPS II Display

• Layer cloud fractions improved with Cloud Base in AWIPS II at the Aviation Weather Center  
• Provisional review this Spring
• Current work: Development of volume browser display

Debra Molenar
Ty Higginbotham
Amanda Terborg

< 5 kft 5-10 kft

10-18 kft 18-24 kft
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Gridded 3D Cloud Data

• Working with the JPSS Aviation Initiative, we 
have developed real-time VIIRS-based cloud 
vertical cross sections for Alaska

• Goal is to enable production of an “active 
sensor-like” cloud mask between arbitrary 
locations

Zachary Perras

• Aviation is critical for health and safety in remote 
regions of Alaska, and to economy

• Large number of aircraft based in AK! Gillfoto (CC BY-SA 2.0)
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Aviation Cross Sections: Alaska

• ”Active sensor-like” cloud 
vertical cross sections…

• … without the active sensors! (*)

(*) but impossible w/o them!

• Let’s take a tour…

https://aviation.cira.colostate.edu

(Click at right for demo)

Leigh Cheatwood-Harris
Mattie Niznik

https://aviation.cira.colostate.edu/
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Aviation Cross Sections: CONUS

• Building on the success of our Alaska (VIIRS) product, and supporting user requests from West Coast 
WFOs, we are now testing a CONUS, ABI-based cross section product
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Aviation Cross Sections

(*) Not a flight path we would 
recommend…

Hurricane Fiona (*)
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User Engagement

• We have regular interactions with pilots (JPSS Aviation Initiative), many opportunities for feedback

• Partner with Aviation Weather Center for product evaluation 
and forecaster interaction

• Featured in Aircraft Owners & Pilots Association ePilot
newsletter and weekly program, as well as the annual survey, 
receiving generally favorable marks
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User Engagement

• We have regular interactions with pilots (JPSS Aviation Initiative), many opportunities for feedback

• Partner with Aviation Weather Center for product evaluation 
and forecaster interaction

• Featured in Aircraft Owners & Pilots Association ePilot
newsletter and weekly program, as well as the annual survey, 
receiving generally favorable marks

• We have provided data for 
multiple NTSB investigations

Small plane crash in Front 
Range Colorado mountains



28Photo: Raffaello Tesi (Rutja76) (CC BY 2.5)

III. Machine Learning for Difficult 
to Retrieve Clouds

https://creativecommons.org/licenses/by/2.5/deed.en
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Multilayer clouds
Multilayer cloud example (CIRA GeoColor)• Multi-layer clouds are a problem for our current 

scheme, which is expected to perform best for 
single-layer clouds

• We are addressing this with machine learning, using 
CloudSat/CALIPSO (matched to GOES-16 ABI) as 
“truth”

Satellite model: NASA
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CloudSat and GOES-16 ABI

NP

EQ

Matchup characteristics:

• Oct 2018 – Jun 2019

• Parallax correction applied

Start with a matchup 
dataset between GOES 16 
ABI and CloudSat/CALIPSO

Apparent Position 

Actual position 

Δx

Dataset:
https://doi.org/10.7910/DVN/LPXYBL

Parallax Error Δx (km) for 5 km High Cloud

https://doi.org/10.7910/DVN/LPXYBL


31

Algorithm Details
• Dataset:

• ∼ 22 million radar profiles matched to 
parallax-corrected  GOES-16 ABI Refl / Tb

• Inputs:
• ABI channels (all channels; common ratios and 

channel differences also tested)
• Low-level relative humidity (serves as a low 

cloud proxy) from NWP model
• Surface information

• “Truth”:
• Was a low cloud present (p > 631 hPa) 

present?  0 or 1 … classification problem
• Models   (All pixel-based)

• Random forest
• 125 trees, max depth of 30

• Artificial neural network
• 3 fully connected layers
• 37 / 77 / 71 hidden units per layer

See Haynes et al. (2022), JTECH
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Model Performance
Statistics for low cloud detection on ABI testing dataset

Probability of detection False alarm ratio Critical success index

Original algorithm
Neural Network
Random Forest

A
BI
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• Machine learning models outperform original algorithm, especially for mixed “Cirrus”/”Overlapping”
• ANN and RF are remarkably similar in performance!
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Machine Learning: Low Cloud Detection

Low Cloud Detection 
Algorithm

Prob of 
Detection

False Alarm 
Ratio

All
cases

Original statistical (CCL)
Random Forest / ANN

0.685
0.815 / 0.807

0.210
0.147 / 0.137

ABI 
Cirrus

Original statistical (CCL)
Random Forest / ANN

0.183
0.686 / 0.684

0.114
0.219 / 0.206

Random Forest

Original algorithm
(CCL)

PoD FAR CSI

• Machine learning produces 
greatest performance 
enhancements relative to 
original algorithm…

• … in higher latitudes

• … in cases where 
Enterprise/ABI 
identifies ”Cirrus” 
(hidden low cloud / 
multilayer)
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RF permutation-based feature importance 
highlights importance of visible channels and RH, 
which is used as a cloud proxy

The “Feature Dropout” plot demonstrates 
how the CSI score changes as features are 
cumulatively dropped as predictors, from 
least to most important.

• The curve is flat for up to ∼10 features dropped!
• Very little influence by surface-type flags
• Demonstrates correlation between ABI channels.
• Also suggests a simplified model will have similar 

performance!

cloud H2O path
cloud particle size

cirrus band
max RH in lowest layers

• The top 3 channels (0.47, 2.2, 1.37 μm) contain 
information that is useful for differentiating cirrus 
with and without underlying low cloud

Feature Importance



35

CCL with Machine Learning
CCL supplemented by RF on full disk

Before
machine 
learning

After
machine 
learning

More deep clouds (purples)
Introduction of high-over-low 

(pinks)

Includes a “nighttime 
version” 🌙 that excludes 
channels 1 through 7 (vis) 

from training
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Cast Study: Machine Learning Impact

ABI CH2
0.64 µm

36

CCL supplemented 
by RF

Before
machine 
learning

More deep clouds (purples)
NEW high-over-low (pinks)

After
machine 
learning

Case: 2022/05/24 18:10 UTC

Case studies suggest the machine learning 
augmentation to CCL produces a much more 

accurate representation of low cloud 
presence
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Colors: Radar 
reflectivity

Magenta: 
Lidar mask

Example cross sections through ABI “Cirrus”

(a)

CCL detection 
supplemented 

by our new 
method

Improved 
detection

(c)

CCL with Machine Learning

(b)
CCL detection 

in black

CCL misses 
cloud under 
cirrus
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(a)

(b)

(c)

• Simplified “7 channel 
model” for VIIRS

Before machine learning

After machine learning

NOAA-20 channel M5

2022/06/28 17:18 UTC

Preliminary example - uncalibrated

Translation for VIIRS

Wang et al. 2020,
Remote Sens.
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ML Model: Multilevel prediction

• Using multi-output prediction, we can use the same inputs to 
predict not only low cloud, but cloud in any layer of our choosing.

• This should ideally (and to a large extend does) preserve the 
observed correlation between cloud layers.

24 kft to TOA

18 to 24 kft

10 to 18 kft

0 to 10 kft

PoD Success 
ratio

Accuracy

Topmost 
layer

0.86 0.89 0.93

(… intermediate layers not shown …)

Bottommost 
layer

0.72 0.80 0.84

Global Evaluation of multilayer 
cloud mask

Observed correlation between 
cloud layers

Predicted correlation between 
cloud layers
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IV. Towards the Future

NASA / NOAA
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CWC Profiles
Credit: Chuck White et al.

• Multi-layer perceptron
• 4 fully-connected layers 

with 64 units each
• Leaky ReLU

• Output
• 9-valued standardized 

profile
• Softmax

In progress: Can we predict 
vertical profiles of cloud water 
content from passive sensors?

Again, we appeal to active 
sensors!
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CWC Profiles
Credit: Chuck White et al.

• Example preliminary 
result

• For demonstration 
purposes, we assume we 
know the actual cloud 
thickness for these 
single-layer cases

• Demonstrates a future 
capability that may be 
useful for aircraft icing
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OVERCAST

Work in progress

• Working towards creation 
of a global, 3D gridded 
real-time cloud product

• Combine GEO and LEO 
sensors

• Compliments ISCCP-NG
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More Measurements

• We need more measurements 
to do more science!

• Machine learning is data-
hungry. So is validation.

• CloudSat and CALIPSO have 
made this work possible. AOS, 
EarthCARE, INCUS, and other 
missions of this type are 
needed to continue it.

NASA
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Conclusions
• Active sensors have been instrumental in our work to derive 3D cloud profiles from passive 

sensors

• 3D cloud products are now being produced in near real-time to benefit NOAA operational 
users, particularly in aviation

• Cloud cross-sections available from: 
https://aviation.cira.colostate.edu for Alaska and 
CONUS

• Machine-learning is used to augment our statistical 
based cloud cover layer product (CONUS), accessible 
via https://rammb-slider.cira.colostate.edu

• Testing with operational users at the Aviation Weather 
Center

https://aviation.cira.colostate.edu/
https://rammb-slider.cira.colostate.edu/
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Conclusions

• CIRA is now working toward production of a global, real-time gridded 3D cloud product 
combining geostationary and polar orbiter sensors

• We’re interested in more than just cloud masks…
currently working on vertical cloud water content profiles as well.

See our new paper
in Remote Sensing

https://dx.doi.org/10.3390/rs14215524

Photo: Raffaello Tesi (Rutja76) (CC BY 2.5)

Thank you!

https://dx.doi.org/10.3390/rs14215524
https://creativecommons.org/licenses/by/2.5/deed.en
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