ACCP Aerosols, Clouds, Convection, and Precipitation Study

Architecture Recommendation Review (ARR)

ACCP Team Strategy

- Initiate an Integrated Global Constellation for the future
 - The domestic and international interest in ACCP is extremely high
 - There are exciting opportunities to explore in adding to ACCP
 - "Build it and they will come..."
- Maintain NASA leadership in the development and implementation of the radar and lidar measurements to do novel and transformative Science
 - NASA Backscatter Lidar flown in space as well as High Spectral Resolution Lidar (HSRL) and multifrequency Doppler Radars flown on many successful, airborne missions define present capability and inform development plan for ACCP space flight
- Work collaboratively with other agencies as the leader of the US science investigations and applications to make exciting advancements for Applications
 - Build on relationships established during previous spaceflight and airborne campaigns and from ACCP community applications needs assessments (conducted in concert with the RTI Innovation Advisors)

ACCP Study

After having...

- looked at over 100 Architectures using our Extensive Instrument Library of Instruments
- had the world's experts perform simulations to quantitatively score Science Benefit
- completed rigorous designs for spacecraft to accommodate payload suite building blocks
- completed rigorous cost exercises including NICM, CEMA Parametric Analyses and had them independently assessed via Peer Review and Aerospace
- stood up Independent Technology Readiness Assessment (TRA) Boards to assess the Risks associated with our instruments
- all while maintaining our Value Framework principles
- and continuously engaging with the independent Science Community Committee and incorporating their feedback...
- the science and applications teams were able to develop a priority scheme
- the management team could use to optimize the Architectures within cost constraints and identify descopes and opportunities

89 Instruments 37 Radars 10 Lidars 15 Radiometers 13 Polarimeters 6 Spectrometers 8 Other (e.g. Cameras)

ACCP Study

- We are very excited to show you the Top 3 Architectures
- We are very pleased to report that the Science Team, Independent Science Community Committee, the Study Management Team and NASA Center Partner Management Board (PMB) leadership all agree on a singe recommendation to HQ...
- The recommended architectures provide multiple breakthrough technologies that will answer fundamental questions about how microscopic particles interact in the atmosphere to fuel severe storms, impact air quality, and influence our changing climate
- In this era of increasing weather and air quality extremes, the recommended architectures provide unique observations to reveal complex global processes
- ACCP will enable decision making that impacts people around the world, from short-term crises to long-term plans. It will advance:
 - Weather Forecasting, Climate Modeling, Air Quality Prediction, Disaster Monitoring

Goals/8 Objectives Key Science Questions/5 $\boldsymbol{\omega}$ SATM

Strategies

nentation

nce

U

์ เว

Top Candidates for Final 3 Architectures—Programmatic Factors Cost, De-Scopes & Risk

Why? Polar Orbit covers the poles for global scale measurement of integrated ACCP longer time scale processes tied to radiation and climate. Lower inclination orbit provides diurnal sampling critical for convection, precipitation and delta t measurements for shorter time scale processes.

First Mission: \$579M Second Mission: \$1006M

Why? Polar Orbit covers the poles for global scale measurement of integrated ACCP longer time scale processes tied to radiation and climate. Instruments in polar provide increased Information with 3 frequency radar and 3 wavelength lidar vs. 2 for each in D1A and a wide swath precipitation radar beneficial for context and applications.

Single Mission: \$1.584B Note: If prohibited from International LV then this option exceeds cap

Why? Polar Orbit covers the poles for global scale measurement of integrated ACCP longer time scale processes tied to radiation and climate. Instruments in polar provide increased Information with 3 frequency radar and 3 wavelength lidar vs. 2 for each in D1A without wide swath precipitation radar beneficial for context and applications to reduce cost.

Architecture D1A stands above the rest offering the benefits of Constellation science, opportunities for Earlier Science at lower initial cost, and potential opportunities for additional International Collaboration

Single Mission: \$1.419B

Instrument Nomenclature Key

Active Sensors

ACCP Identifier		Spectrum	Architecture		
			D1A	P1	P2
Doppler Radars	Radar_13E	KaD, WD	\checkmark	\checkmark	
	Radar_13E+1	KuD, KaD, WD			\checkmark
	Radar_18	KuD, W	\checkmark		
	Radar_17DN	KuD		\checkmark	
Lidars	Lidar_05	532 nm HSRL 1064 nm	✓		
	Lidar_06	355 nm HSRL 532 nm HSRL 1064 nm		√	\checkmark
	Lidar_09er	532 nm 1064 nm	\checkmark		

Passive Sensors

ACCP Identifier		Grandtmure	Architecture		
		Spectrum	D1A	P1	P2
Spectro- meters	Spec_03	LWIR, FIR	\checkmark	\checkmark	\checkmark
	Spec_04	UV,VIS,NIR,SWIR	\checkmark	\checkmark	\checkmark
Radio- meters	Radio_07	118/183/240/310/380/ 660/880 GHz	~	~	\checkmark
	Radio_09x	89/183/325 GHz	Possible substitute for Radio_07	Possible substitute for Radio_07	Possible substitute for Radio_07
Polari- meters	Polar_04b	UV/VIS, VNIR/SWIR	\checkmark		
	Polar_07	UV/VIS, VNIR/SWIR	\checkmark	\checkmark	\checkmark
Other	ALI	VNIR, SWIR		\checkmark	\checkmark
	SHOW	NIR		\checkmark	\checkmark
	Camera	VIS	\checkmark	\checkmark	\checkmark

Capabilities

General call for Instrument

Study Plan & Process for Selecting Observing System Architectures

Filters: Qualitative Science Benefit Scoring and Initial Cost Estimates

~100 Potential Options

- Large number of constellations with Large to Small Sats required to accommodate Instruments
- Perform building-block level design center sessions (JPL, LaRC, MSFC, GSFC)
- Identify primary drivers #1 E and iterate against SATM

~12 Feasible Options

- Refine Science Scoring with OSSEs
- Refine Cost with parametric- and analogybased models
- Instrument Technical **Readiness Reviews**
- Quantified Risk
- Programmatic Factors

3 Recommended **Options To HQ**

and Risk and Cost Assessments

- Highest Science Value Within Cost
- Quantified Risk
- Programmatic Factors

June 2019

Sept 2020

Jan 2021

Original Plan: Summer 2021 FY22: Start Pre-Phase A7

Ready To Recommend 1 Architecture and To Move To Pre-Phase A

Completed 8 Months Early:

Filters: Science Value vetted with community team;

Study Team Dynamics

SATM Review Feb. 2019 GSFC

JPL Team-X Design Session Summer 2019

Meeting with French Team Feb. 2020 Washington, D.C

Major Community Engagement Events

April 2019 Full Community Workshop Pasadena, CA

Applications Workshops July 2019 Sub-Orbital Workshop March 2020 Modeling Workshop November 2020 Applications Transportation Workshop November 2020 Multiple Community Forums via Web-Ex

The 5 First Evers of ACCP

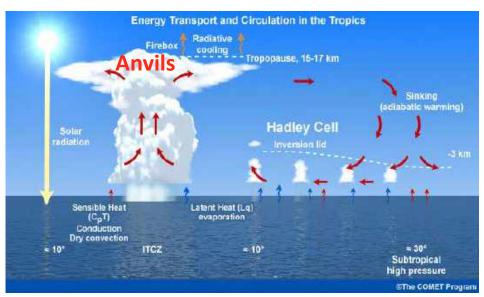
Greg Carmichael and Sue van den Heever SCC Co-Chairs

The 5 First-Evers of ACCP

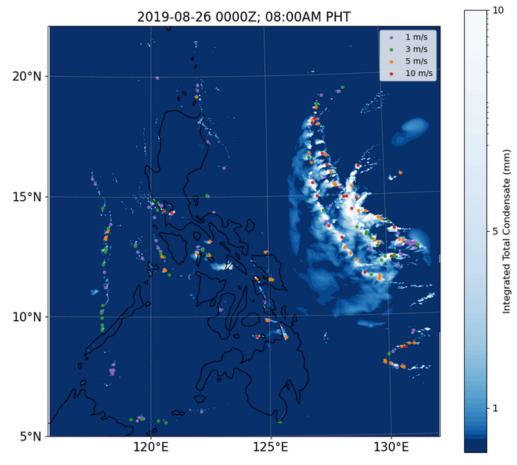
- 1. Global Observations of Vertical Motion
- 2. Global Profiles of Aerosol Properties
- 3. Co-Located Dynamics, Microphysics and Aerosol Characteristics
- 4. Evolution of Cloud and Aerosol Processes
- 5. Diurnal Cycle of Clouds and Aerosols

1. Vertical Motion – What We Know

1. Vertical Transport and Fresh Water


Cloud 140646 CDT

141246


141539 (Image: Fujita)

2. High Clouds and Large Scale Circulation

140934

3. Storm Organization, Structure, and Longevity

The colored dots represent the location and intensity of vertical motions or updrafts in these systems (after Freeman and van den Heever 2020)

NAS

4. Severe Weather

Tornadoes

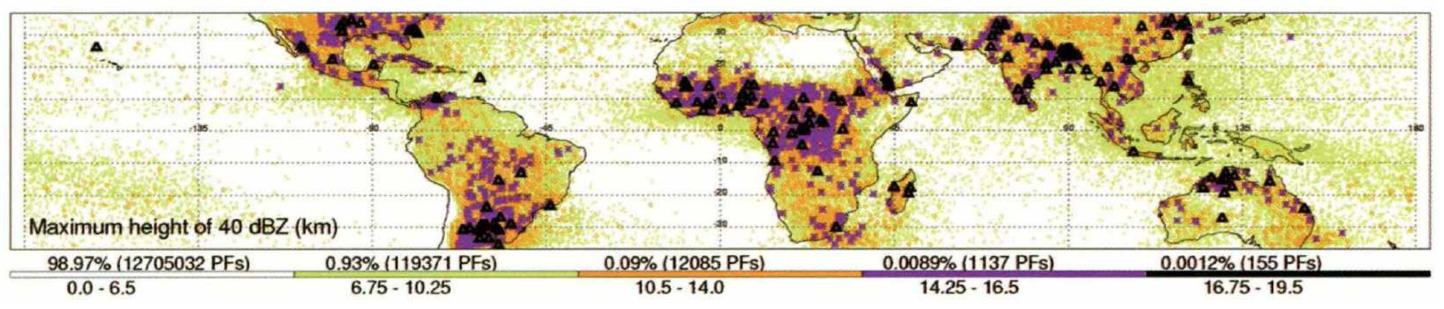
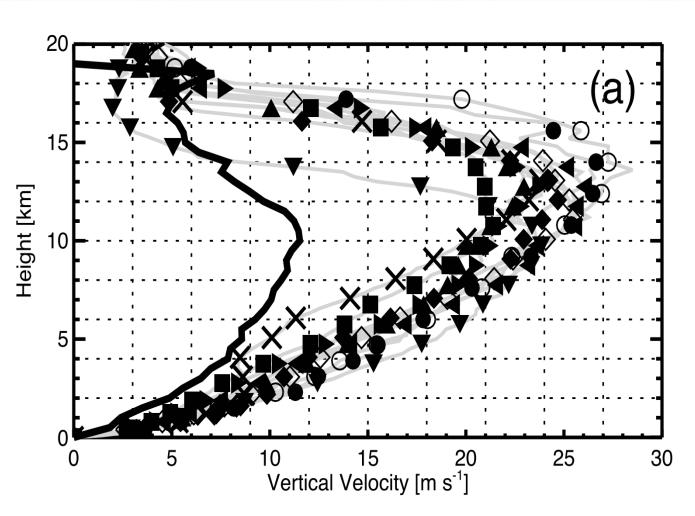

Large hail

Image: Andrew Kozak

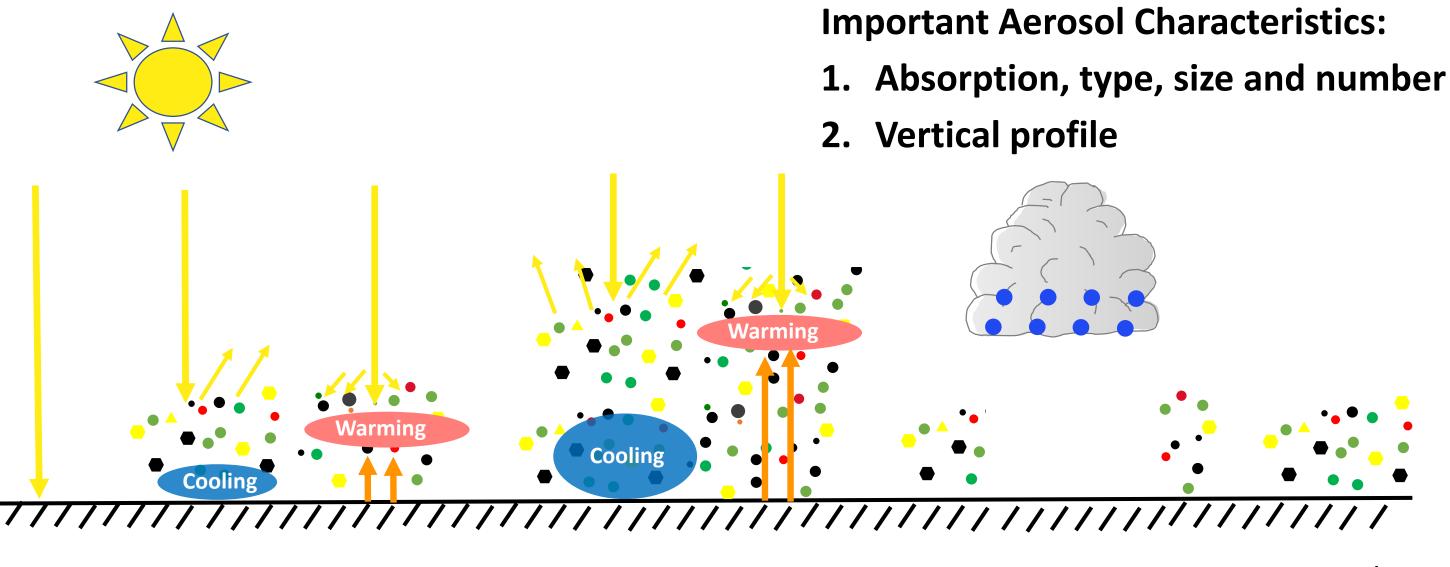
Heavy Rainfall and Lightning

1. Vertical Motion – What We Don't Know


Distribution of the maximum height of 40 dBZ (km) (after Zipser et al. 2006).

- Why do storms over equatorial Africa produce less rainfall than those over equatorial America even though they have higher cloud tops, more lightning and are more intense?
- Why are storms so severe over Argentina but not over southern Africa or Australia?

1. Vertical Motion – What Do We Need?


- Our high-resolution cloud-resolving numerical models have been found at times to overpredict vertical motions
- Implications for our global climate model parameterizations
- Global measurements of vertical motions in clouds
- Address W-4 in the DS: "Why convective storms, heavy precipitation, and clouds occur when and where they do?"
- Evaluate our numerical models thereby improving prediction

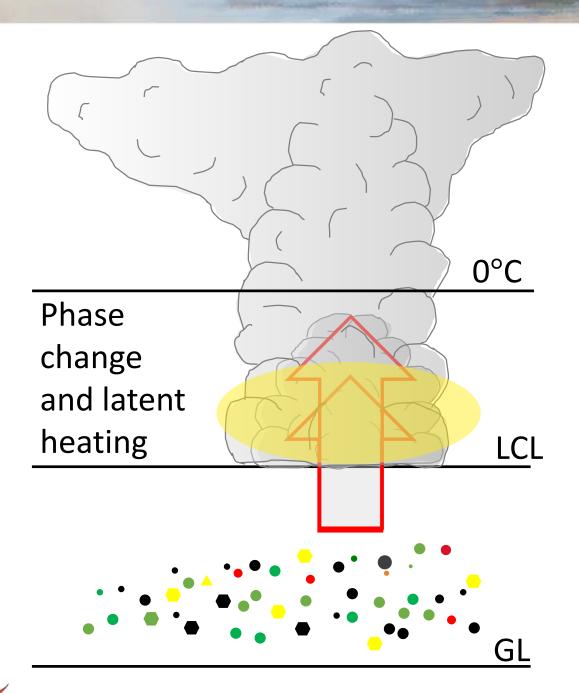
Simulated vertical velocity (symbols / dots) compared with Doppler-derived vertical velocity (solid curve) for the same case study (Varble et al 2014)

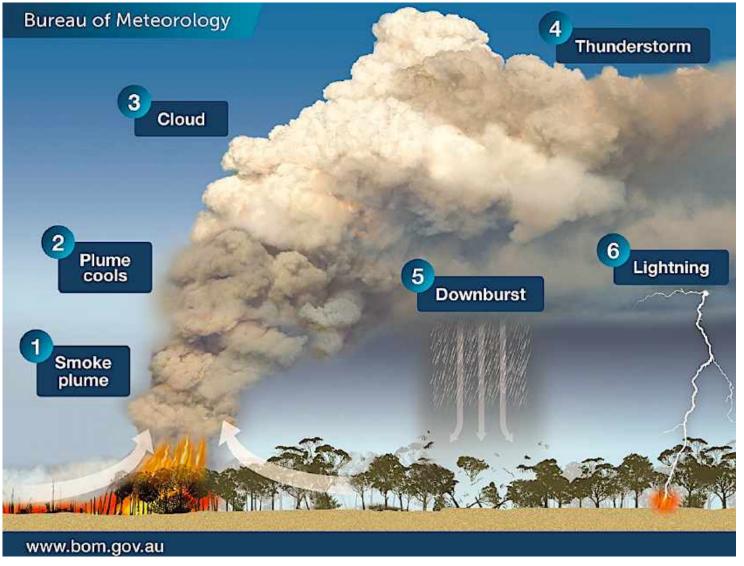
2. Profiles of Aerosol Properties

Clear Air Impacts on Radiation **Vertical Profile of Aerosol**

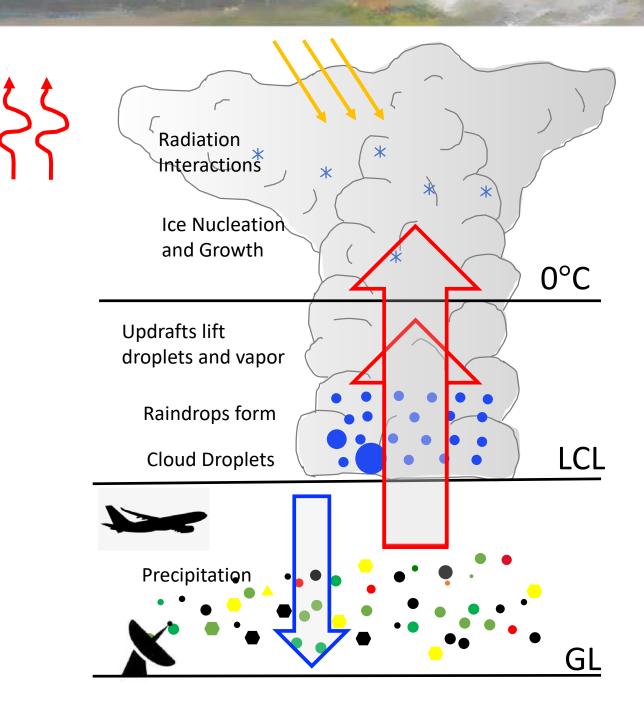
Removal by Rainfall

Air Quality


2. Vertical Profiles of Aerosol **Properties – What Do We Need?**


- High-resolution profiles of aerosol properties, including absorption and types \rightarrow better quantify warming and anthropogenic contributions to forcing
- Aerosol observations in the boundary layer \rightarrow advance our capabilities of identifying anthropogenic aerosols and links to human health
- Simultaneous measurements of aerosol and precipitation processes \rightarrow better understanding of removal and redistribution processes

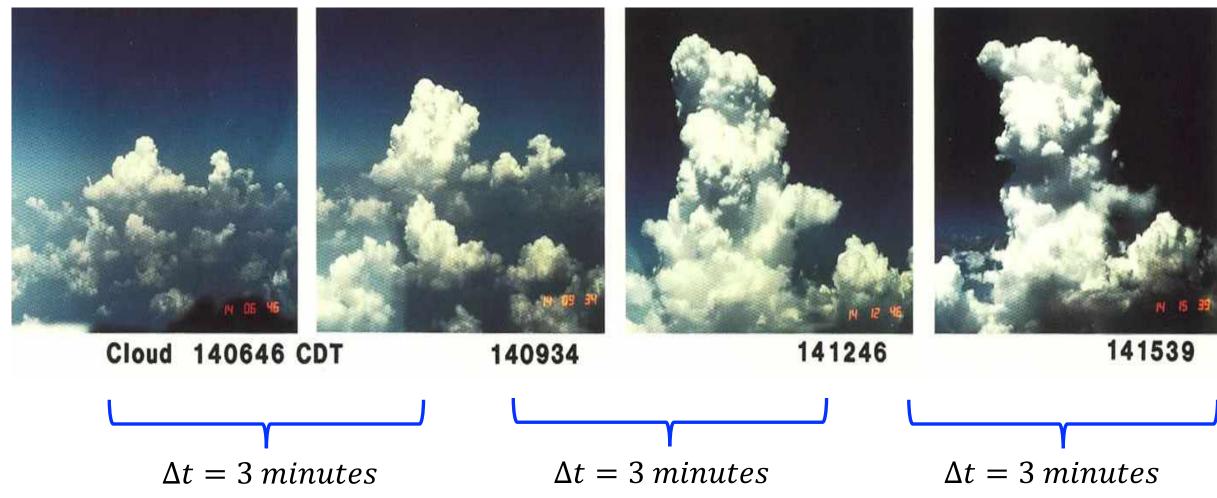
3. CO-LOCATED Dynamics, Microphysics and **Aerosol Characteristics**



The storms developing in association with recent fires demonstrate links between vertical motion, aerosols, cloud and precipitation processes

O-LOCATED Dynamics, Microphysics and Aerosol Characteristics – What Do We Need?

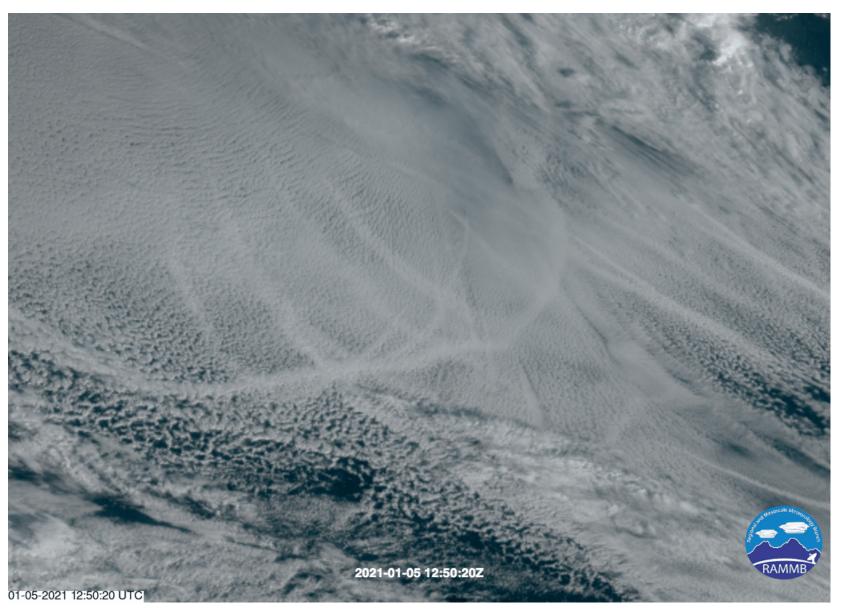
- Aerosols, cloud particles, vertical motion and radiation are integrally linked
- Global, CO-LOCATED simultaneous measurements of aerosols, cloud particles, vertical motion and radiation \rightarrow significantly enhance our understanding and prediction of CLOUD **PROCESSES**
- Obtain critical complementary observations of vertical motion and aerosol and cloud processes below cloud and in the BL

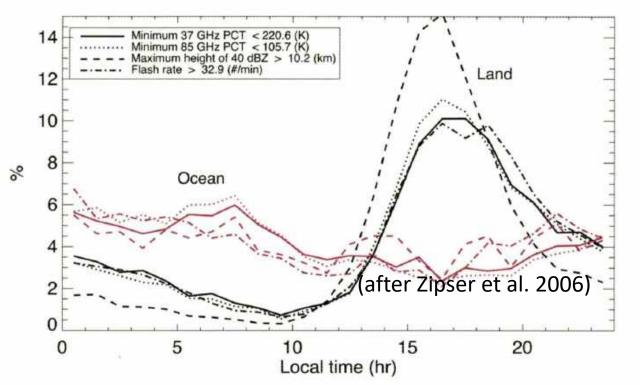


4. Cloud and Aerosol PROCESSES

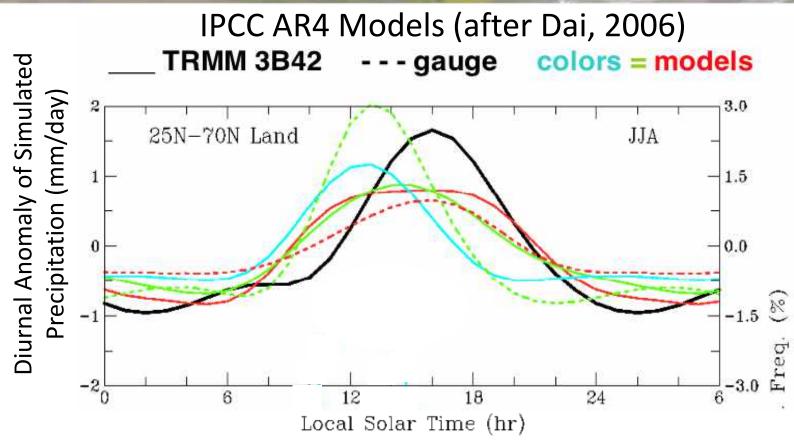
$$PROCESS = \frac{\partial X}{\partial t}$$

Image: Ted Fujita




4. Cloud and Aerosol PROCESSES – What Do We Need?

- Evolution of stratocumulus clouds between open and closed cells, and the impact of ship tracks on the cloud system
- To understand the vertical motions within these shallow cloud systems, as well as how the aerosol plumes and cloud structures rapidly evolve and interact over short timescales we need to make observations on short time intervals


Evolving Stratocumulus and Ship Tracks

5. Diurnal Cycle – What Do We **Need?**

- Continental clouds and rain rates peak in midlate afternoon or evening whereas maritime rainfall rates peak in the early morning
- Why do maritime clouds reach their maximum in the early morning hours?

- In all AR4 GCMs rain occurs near local noon
- The diurnal evolution of cloud systems is also \bullet challenging in high-resolution NWP models

We need simultaneous co-located observations of the vertical motions, cloud, aerosols and radiation, throughout the diurnal cycle.

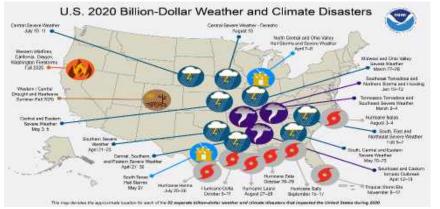
ACCP Aerosol, Clouds, Convection, and Precipitation Study

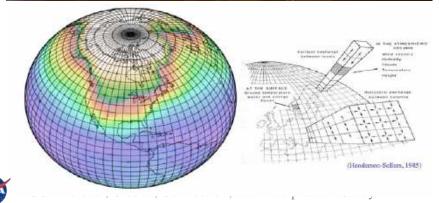
The 5 First-Evers of ACCP

- 1. Global Observations of Vertical Motion
- 2. Global Profiles of Aerosol Properties
- 3. Co-Located Dynamics, Microphysics and Aerosol Characteristics
- 4. Evolution of Cloud and Aerosol Processes
- 5. Diurnal Cycle of Clouds and Aerosols

High Level ACCP Science and Applications

Scott Braun





a 🚓 🤏 🚌

Why ACCP Matters

ACCP Public Benefits for Storms:

First ever global view of thunderstorm vertical air motions and precipitation properties in severe storms, enabling operational weather communities to better understand and predict storms

ACCP Public Benefits for Air Quality

Unprecedent information on aerosols, enabling better understanding and prediction of the types and properties of aerosols that can be detrimental to people's health

ACCP Public benefits for Climate

Novel estimates of coupled vertical air motion, clouds and aerosol properties that will support sub-seasonal to seasonal (S2S) and climate modeling communities to better assess future hydrometeorological extremes

CCP ACCP and the IPCC Assessment Report

Sixth Assessment Report

The Sixth Assessment Report is underway.

AR6 Climate Change 2021: The Physical Science Basis

The Working Group I contribution to the Sixth Assessment Report is expected to be finalized in 2021. REPORT

AR6 WG1 report topic areas

Climate system observations, processes and interactions

Natural and anthropogenic drivers of climate change

Climate modelling, predictions, detection and attribution

Feedbacks and dynamical responses

Climate variability and implications for regional climate

The National Academies of SCIENCES • ENGINEERING • MEDICINE

CONSENSUS STUDY REPORT

THRIVING ON OUR CHANGING PLANET

A Decadal Strategy for Earth Observation from Space

EXPLORE SCIENCE 2020-2024 A Vision for Science Excellence

Aeronautics and Space Adr

Earth Science

NASA Earth Science unlocks the mysteries of our planet, exploring, discovering, and responding to the need to understand our planet's interconnected systems, from a global scale to minute processes. This knowledge and understanding serves the fundamental need to improve our lives on Earth, advancing this frontier for all humanity. NASA pursues both curiosity-driven and practically focused Earth science because our ability to thrive on our home planet is undeniably tied to our scientific understanding and predictive capability of its dynamics and phenomena.

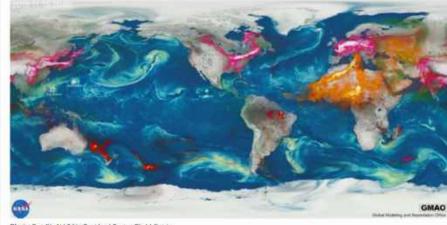


Photo Credit: NASA's Goddard Space Flight Center

NASA's <u>Global Modeling and Assimilation Office</u> used Earth science data gathered from multiple missions to <u>staualize</u> several high impact events across the globa between August 2019 and January 2020, including Hurricane Doman (August to September 2019), major fire events in South America and Indonesia (August to September 2019), and extreme witdfires in Australia (December 2019 to January 2020). The model helps demonstrate how different events interact and the environmental impacts they can have around the globe.

NASA Earth Science explores our rapidly changing world, where natural and human factors interact, following an interdisciplinary, Earth systems approach that examines the interplay among the atmospheric, ocean, land, and ice systems. Using the recommendations of the 2017 NASA Earth Science Decadal Survey, *Thriving on Our Changing Planet a Decadal Strategy for Earth Observation from Space*, as a compass, NASA Earth Science is developing the observing systems that will answer the most important science and application questions of the next decade across the following focus areas:

- Coupling of the water and energy cycles
- Ecosystem change
- Extending and improving weather and air quality forecasts
- Reducing climate uncertainty and informing societal response
- Sea-level rise
- Surface dynamics, geological hazards and disasters

Decadal Survey Science Questions Related to ACCP

Weather & Air Quality Panel

W-1 (MI): Planetary Boundary Layer Dynamics.

W-2 (MI): Larger Range Environmental Predictions.

W-4 (MI): Convective Storm Formation Processes.

W-5 (MI): Air Pollution Processes and Distribution.

W-6 (I): Air Pollution Processes and Trends.

W-9 (I): Role of Cloud Microphysical Processes.

W-10 (I): Clouds and Radiative Forcing. Climate Variability and Change Panel

C-2 (MI): Climate Feedback and Sensitivity.

C-5 (I-VI): Aerosols and Aerosol Cloud Interactions. Hydrological Cycle Panel

H-1 (MI): Coupling the Water and Energy Cycles.

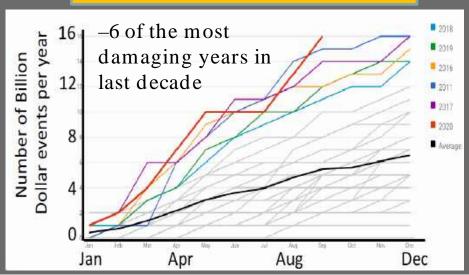
C-8 (I): Causes and Effects of Polar Amplification.

Most Important

Very Important

Important

Decadal Survey Science Questions Related to ACCP


Weather & Air Quality Panel

W-1 (MI): Planetary Boundary Layer Dynamics.

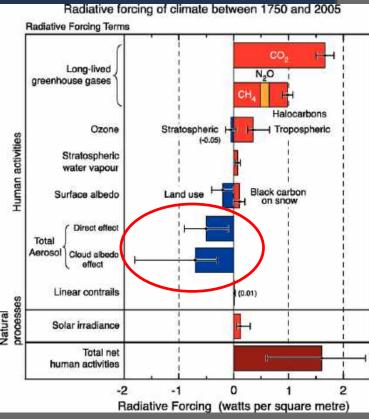
W-2 (MI): Larger Range Environmental Predictions.

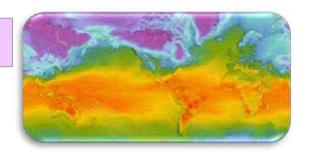
W-4 (MI): Convective Storm Formation Processes.

W-5 (MI): Air Pollution Processes and Distribution.

Climate Variability and Change Panel

C-2 (MI): Climate Feedback and Sensitivity.


C-5 (I-VI): Aerosols and Aerosol Cloud Interactions

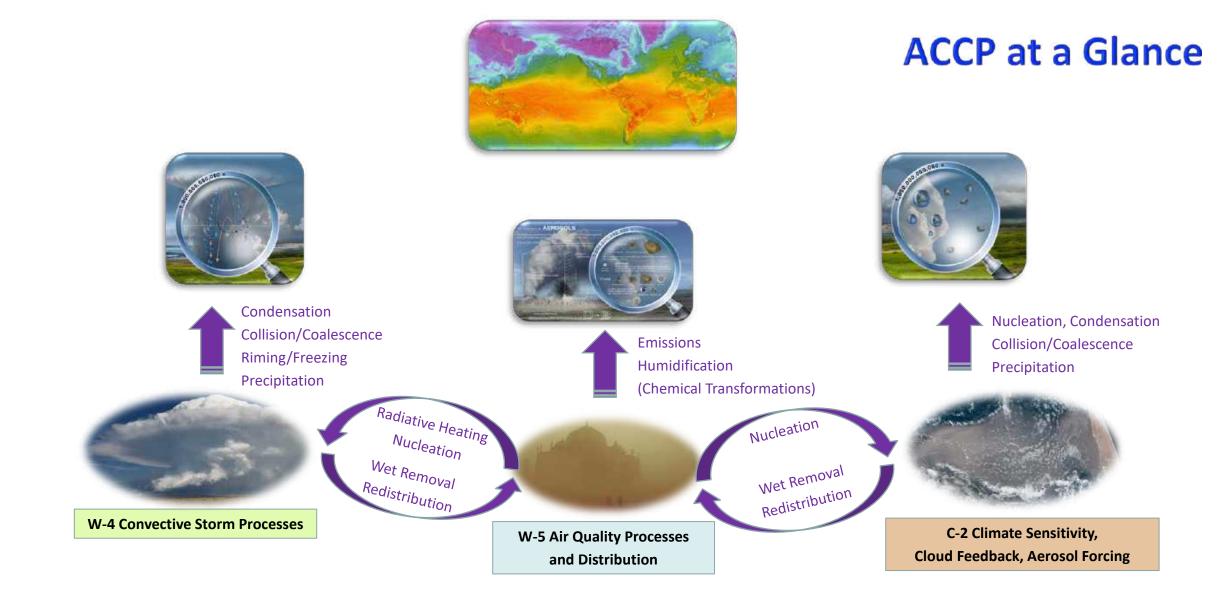

Hydrological Cycle Panel

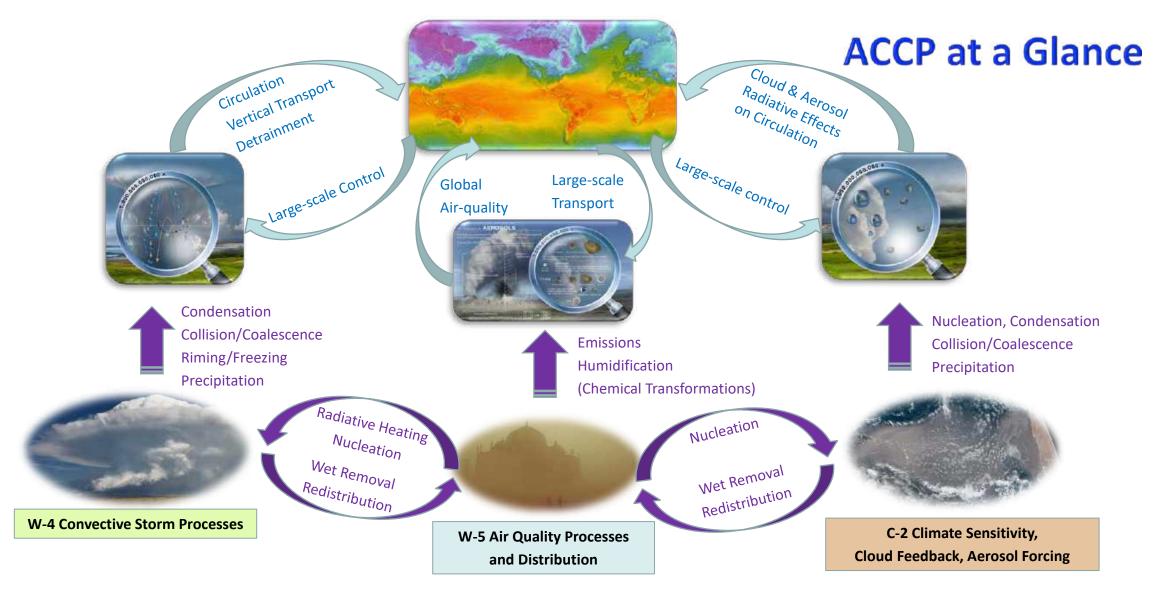
H-1 (MI): Coupling the Water and Energy Cycles.

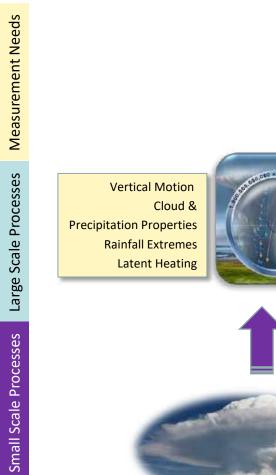
C-8 (I): Causes and Effects of

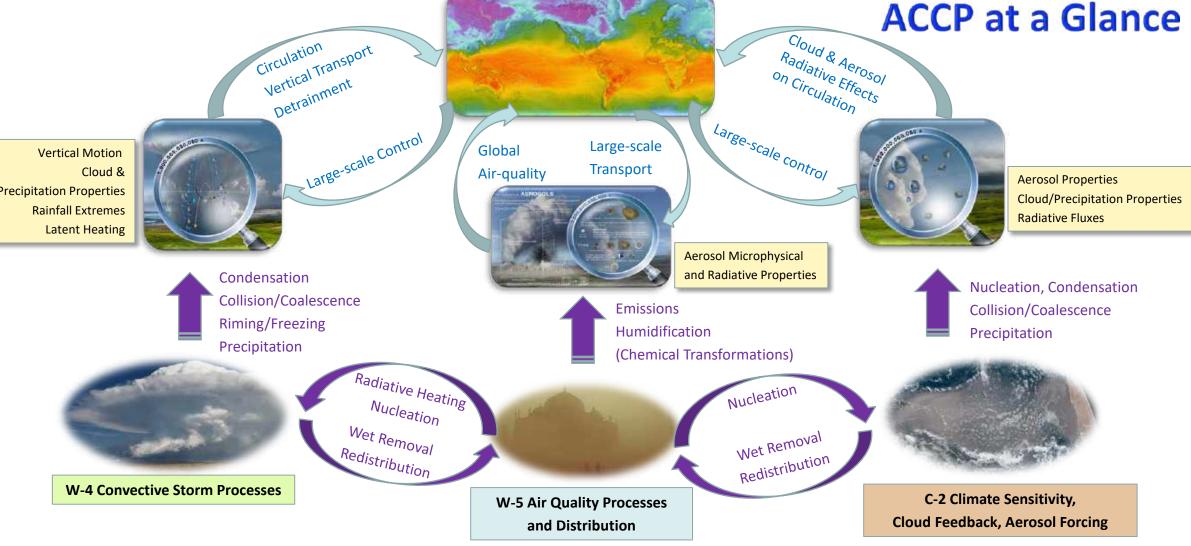
-Overarching Goal: Characterize the Role of Aerosols, Clouds, & Precipitation in Weather, Climate, and Air Quality Prediction

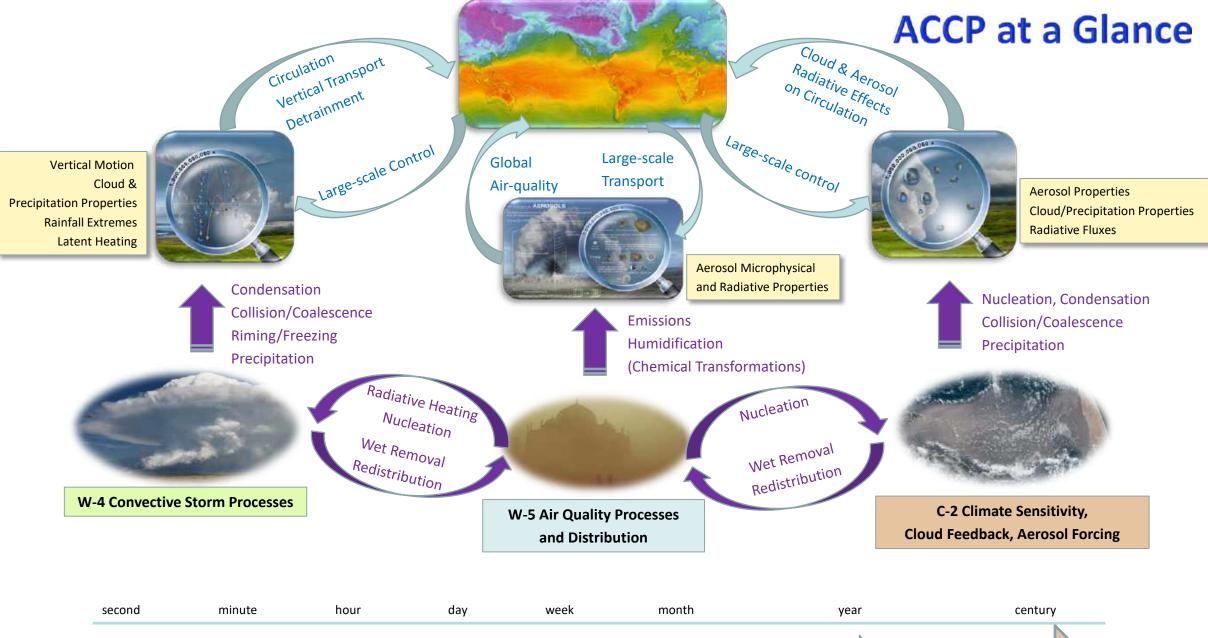
ACCP at a Glance

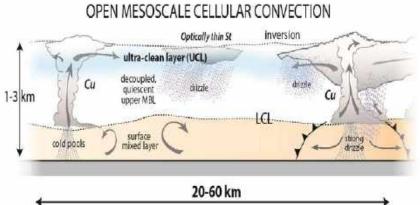


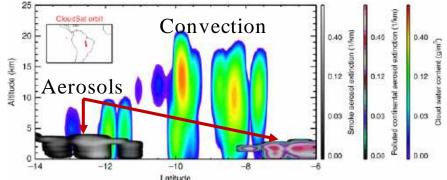

W-4 Convective Storm Processes


Con the second


W-5 Air Quality Processes and Distribution


C-2 Climate Sensitivity, Cloud Feedback, Aerosol Forcing





CCP As A Central Part of the PoR

ACCP science requires active profiling measurements that likely will be absent from the PoR

ACCP Applications for Societal Benefit

Climate Modeling

Aviation

Tropical Cyclone Forecasting

Numerical Weather Prediction

Air Quality Rules

and Regulations

S2S Forecasting

Air Quality Modeling (forecasting)

Air Pollution/Air Quality Monitoring

ACCP explores the fundamental questions of how interconnections between aerosols, clouds and precipitation impact public health, weather and climate, addressing realworld challenges to benefit society.

Human Health

Hydrologic Modeling: Water Resources, Agriculture, Drought Hydrometeorological Disasters: Floods, Landslides

-Atmospheric

Disasters: Fires.

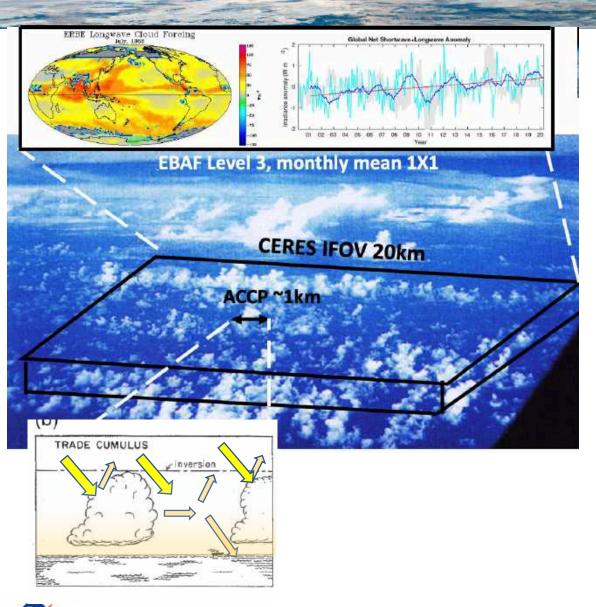
Volcandes

-Dust Sfo

Addressing the radiation requirements for ACCP

- ACCP and the PoR (CERES, Libera)
- The transformative nature of the ACCP approach
- Heritage, Maturity & opportunities

Required Features	ACCP	PoR
Broadband fluxes	✓□	✓□
'cloud' scale rad fluxes	✓ 🗆	×
Property dependences ('kernels')	✓ 🗆	(🗙)


	Spec03 8	& Spec04
	Longwave (thermal IR)	Shortwave (Solar)
tage ethod,	PREFIRE	EarthCARE
surement	TIRS	CLARREO PF

Не

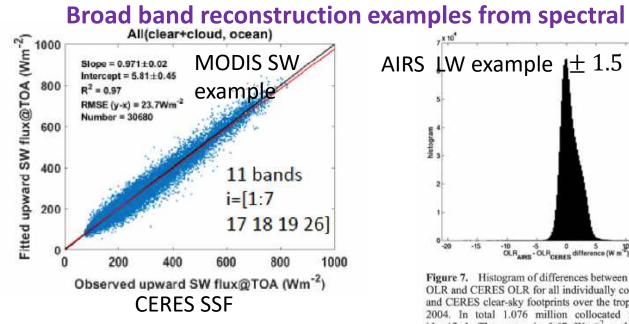
of n

mea

The ACCP approach to measure cloud & aerosol radiative effects

- Distinguish radiative effects of clouds and aerosol separately.
- Requires fluxes identified on the scale of clouds and spaces between them (order 1km)
- The PoR cannot resolve these effects on this scale but offers a large-scale constraint
- Quantifying the influences of clouds and aerosol on climate forcings and feedbacks requires quantification of changes in 'radiation' due to changes in 'cloud' and 'aerosol' distributions and properties – these sensitivities are expressed as 'kernels'

Spectral measurements offer a transformative and tightly constrained way of quantifying these Kernels from obs

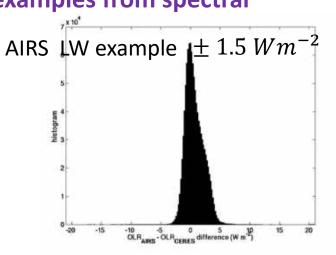
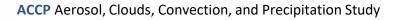

Heritage, maturity & opportunities

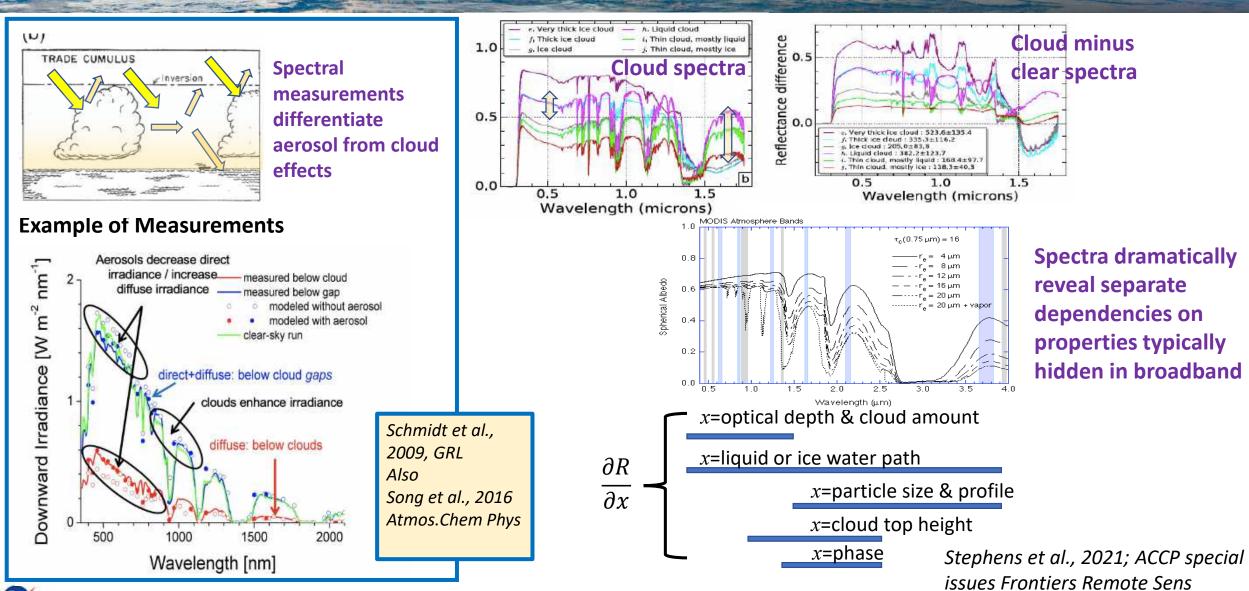
The ACCP approach to derive LW fluxes will draw directly from PREFIRE which in turn has significant heritage from applications of sounders (see AIRS example).

The ACCP approach to derive SW fluxes at the cloud scale draws directly from the EarthCARE approach. Spectral measurements are an essential constraint and CLARREO PF provides an ideal opportunity to develop & mature it.

Spectral observations to quantify 'kernels' draws in part from the significant heritage in cloud and aerosol property retrievals of MODIS and other spectral measurements.

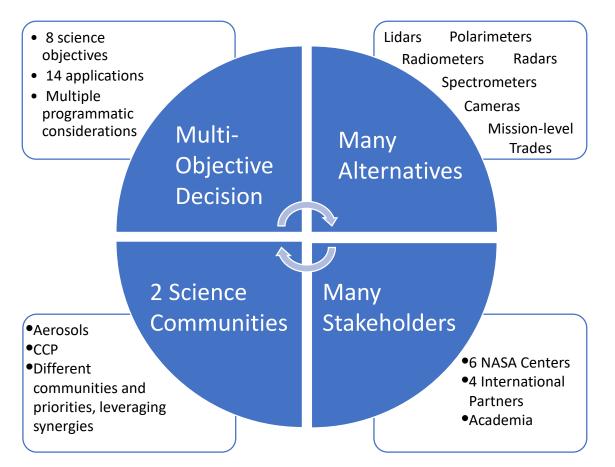
Required Features	ACCP	PoR
Broadband fluxes	✓ 🗆	✓□
'cloud' scale rad fluxes	✓ 🗆	×
Property dependences ('kernels')	✓ 🗆	(🗙)


Figure 7. Histogram of differences between AIRS-derived OLR and CERES OLR for all individually collocated AIRS and CERES clear-sky footprints over the tropical oceans in 2004. In total 1.076 million collocated footprints are identified. The mean is 0.67 Wm⁻² and the standard deviation is 1.52 Wm⁻²

The next slide adds further support for the approach

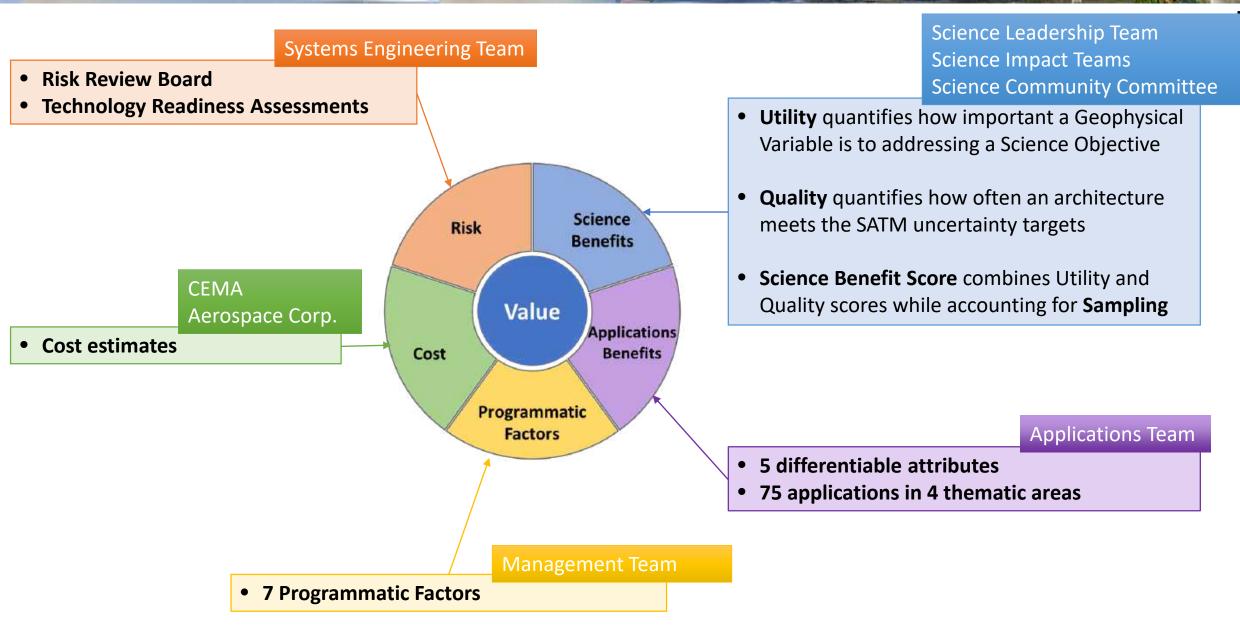
The importance of spectrally resolved measurements



ACCP Aerosol, Clouds, Convection, and Precipitation Study

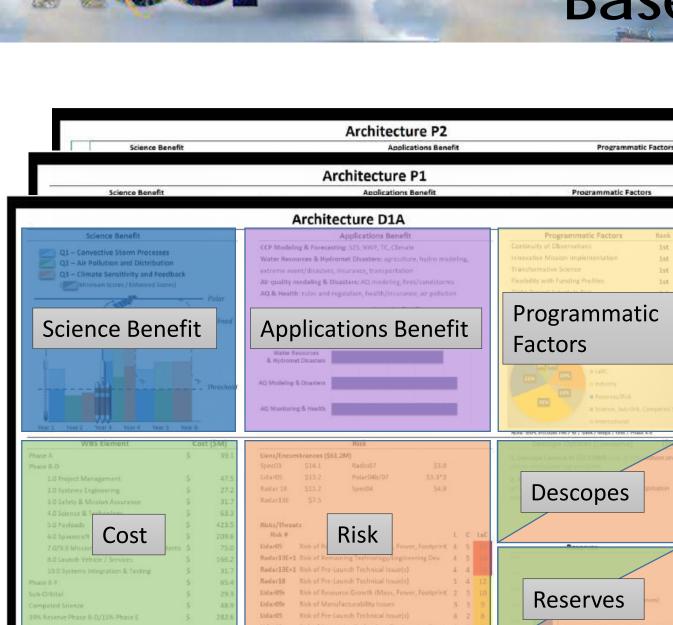
A Value Framework for the ACCP Study

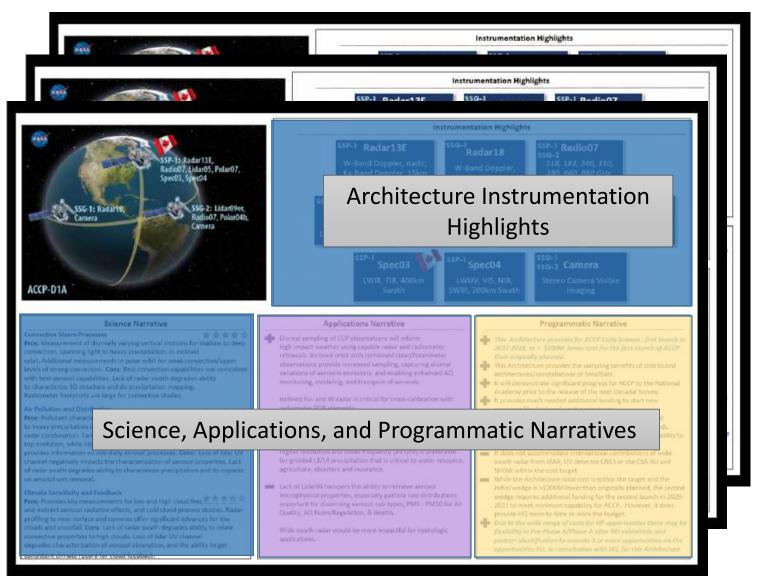
- The ACCP Value Framework enables scientists and engineers across multiple NASA centers, academia, and international partners to collaborate in defining and evaluating candidate observing system concepts
- A structured, traceable, and transparent approach to be responsive to a **complex** decision landscape:



- A **holistic** approach that **informs** the decision-making process:
 - Comprehensive examination of all elements of the decision space to enable trade-offs (science, applications, programmatic factors, cost, and risk)
 - **Common terminology** to enable productive conversations ۲ across a large, diverse group
 - **Data-driven**, consistent evaluations augmented by structured expert judgement
 - **Independent** team firewalled from LaRC that facilitates but does not provide input into the assessment

Strategic Assessment of the Architectures

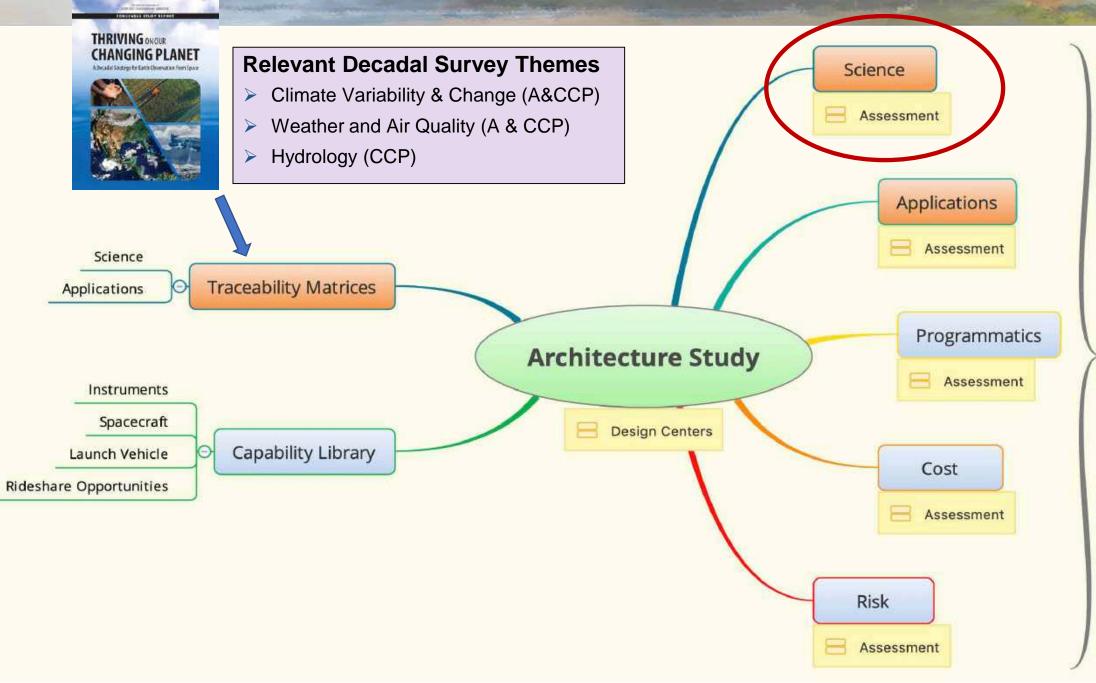




For each architecture under consideration:

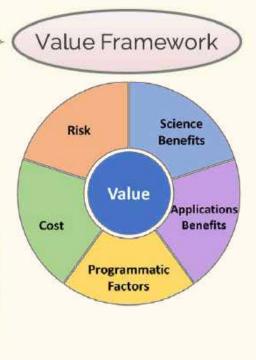
- The assessment is ٠ performed consistently
- **Objective assessments** • are prioritized
- Checks and balances are • implemented
- All data sources are • archived and linked to summary products

Analysis Summary Product: Baseball Cards

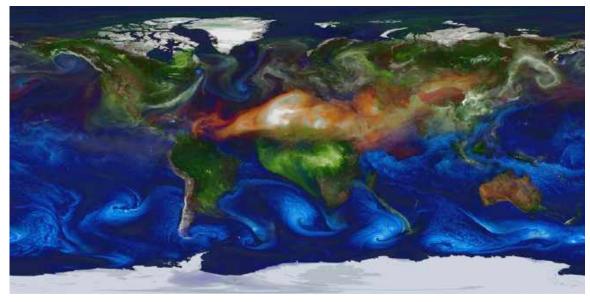


Science Benefit Scoring

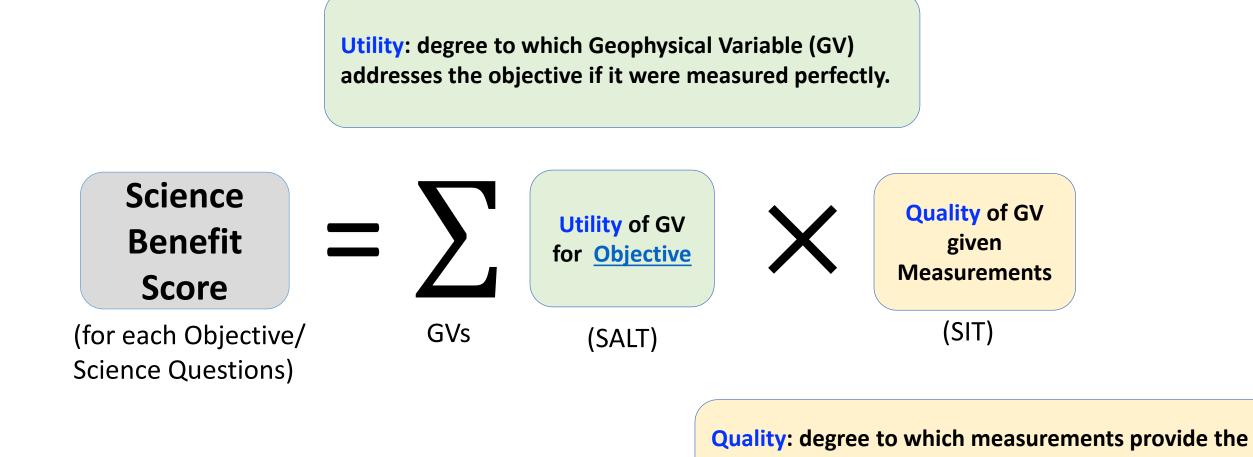
Arlindo da Silva


ACCP Study: Approach

Observing System Simulation Experiments


Provide the quantitative framework for the Science Assessments

OSSEs in ACPP

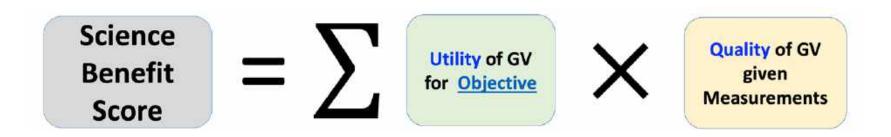

Traditionally: OSSEs evaluate potential impact of new observations on a weather forecast (Hoffman and Atlas, 2016; BAMS)

- **Fundamentally**: OSSEs quantify information in a future observing system
- □ ACCP considers a **Spectrum of OSSEs**:
 - ✓ Retrieval OSSE
 - ✓ Sampling OSSE
 - Forecast/reanalysis OSSE
 - o Process OSSE

Basic Science Benefit Scores

Similar to approach outlined on *Continuity of NASA Earth* **Observations from Space report (NAS 2015)**

desired geophysical variable. OSSEs inform the quality assessment.

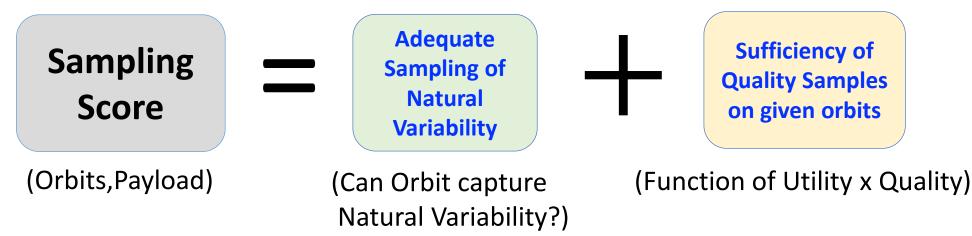


Quality as Operational Efficiency

As implemented in ACCP, the Quality Score is a measure of **Operational Efficiency**.

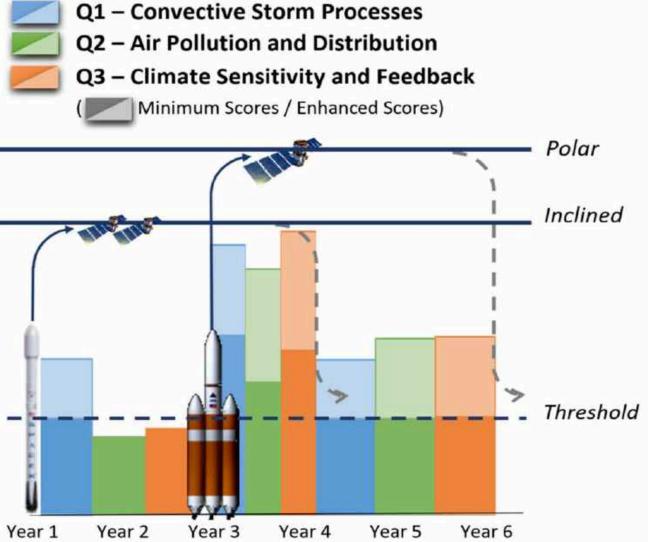
> given opportunities to observe on a given orbit, the **Q-score** of a GV is the percent of retrievals that satisfy the uncertainty requirements called for in the SATM.

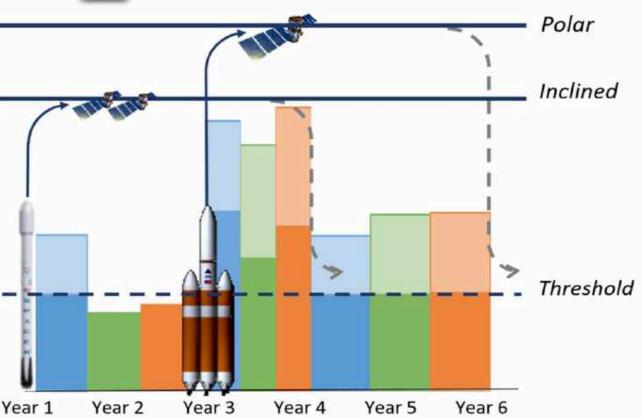
□ The basic Science Benefit Score is average Operational Efficiency



Accounting for Sampling

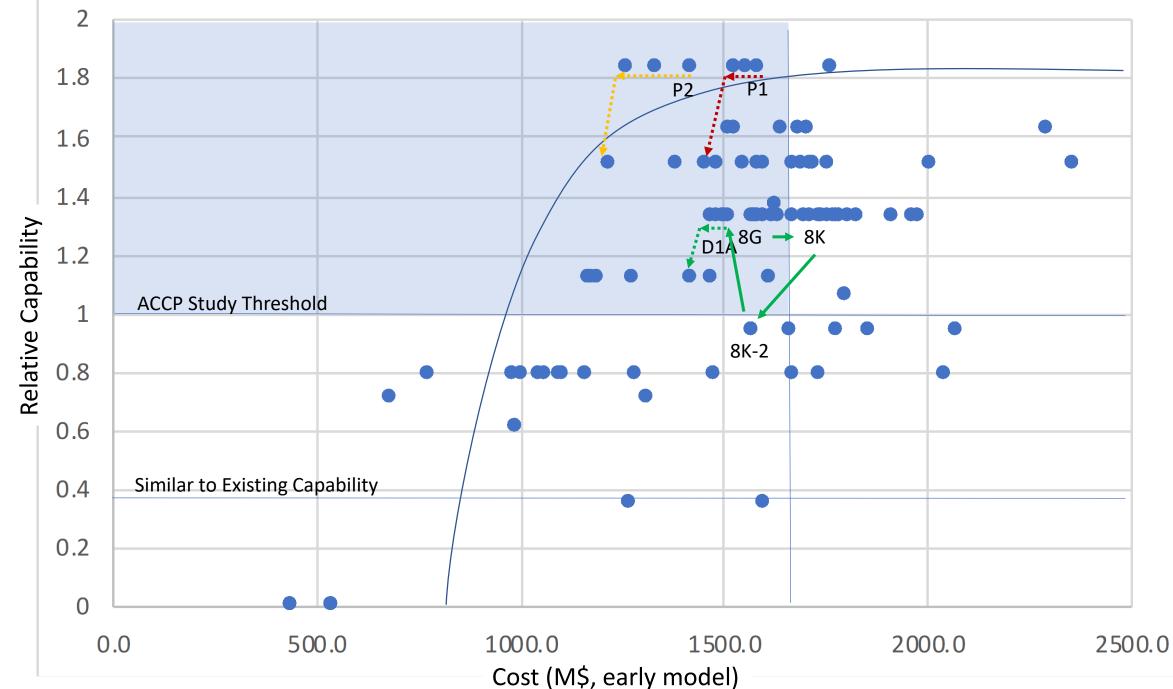
- Being a process-oriented mission, it is important that the scoring process captures whether the phenomena of interest are appropriately sampled
- ACCP Sampling Scores builds on the basic Science Benefit scores of the previous slide:


Example Scores


ACCP Science and Application Traceability Matrix (SATM) defines:

Minimum Science = Threshold Science

Enhanced Science = **Baseline** Science


A+C CP	A	CCP	Objectives
			O1 Low Clouds Minimum: Determine the sensitivity of boundary layer <i>bulk</i> cloud physical and radiative properties to large-scale and local environmental factors including thermodynamic and dynamic properties. Enhanced: Adds to Minimum cloud <i>microphysical</i> properties and enhanced bulk cloud properties.

ACCP Vertical Profiling Capability vs. Cost Reveals Viable Trade Space

NASA

ACCP Aerosol, Clouds, Convection, and Precipitation Study

ACCP Aerosols, Clouds, Convection, and Precipitation Study

ACCP Science Impact Team – Aerosols (SIT-A) Summary of Activities for HQ review

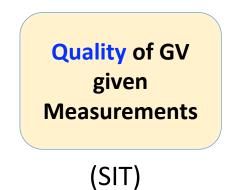
February 5, 2021

POC: Vickie Moran

Contents

- The Charter of the SIT-A... as it has evolved
- SIT-A Team Members and Tasking
- Active & Passive Aerosol Remote Sensing; Complexities Addressed
- SIT-A Architecture Evaluation Approach: Workflow and Methodologies
- Complementarity with Lidar Working Group Activities
- Quality Scores and Additional Outcomes
- SIT-A major findings

Addressed Aethodologies



The Charter of the SIT-A has evolved!

"... to quantitatively evaluate retrieval uncertainties for aerosol Geophysical Variables, to compare them to SATM requirements, and to translate them into Quality Scores that can be used in the Value Framework, highlighting relative performance differences between instrument combinations".

Final approach also included expert elicitation.

Quality \equiv Fraction of retrievals that provide uncertainties or errors within SATM requirement

First Name	Last Name	Institution	
Susanne	Bauer	GISS	
Sharon	Burton	LaRC	
Brian	Cairns	GISS	
Patricia	Castellanos	GSFC	
Eduard	Chemyakin	LaRC	
Pete	Colarco	GSFC	
Arlindo	da Silva	GSFC	
Reed	Espinosa	GSFC	
Richard	Ferrare	LaRC	
Connor	Flynn	U. Okla.	
Lan	Gao	U. Okla.	
Michael	Garay	JPL	
Robert	Holz	U. Wisc.	
Meloe	Kacenelenbogen	ARC	
Olga	Kalashnikova	JPL	
Seiji	Kato	LaRC	
Osku	Kemppinen	GSFC	
Rob	Levy	GSFC	
Xu	Liu	LaRC	
Marcela	Loria	U. Okla.	
Richard	Moore	LaRC	
Ed	Nowottnick	GSFC	
David	Painemal	LaRC	
Kathleen	Powell	LaRC	- F
Jens	Redemann	U. Okla.	 J
Snorre	Stamnes	LaRC	
Tyler	Thorsen	LaRC	
Travis	Toth	LaRC	ןן
Mark	Vaughan	LaRC	4
Dave	Winker	LaRC	ם ב
Feng	Xu	U. Okla.	F
John	Yorks	GSFC	5

SIT-A Team members represent most NASA centers and Universities involved in ACCP, plus various international institutions!

Names in bold: Team leads at their institutions and/or Study Team (expert assessment team) members

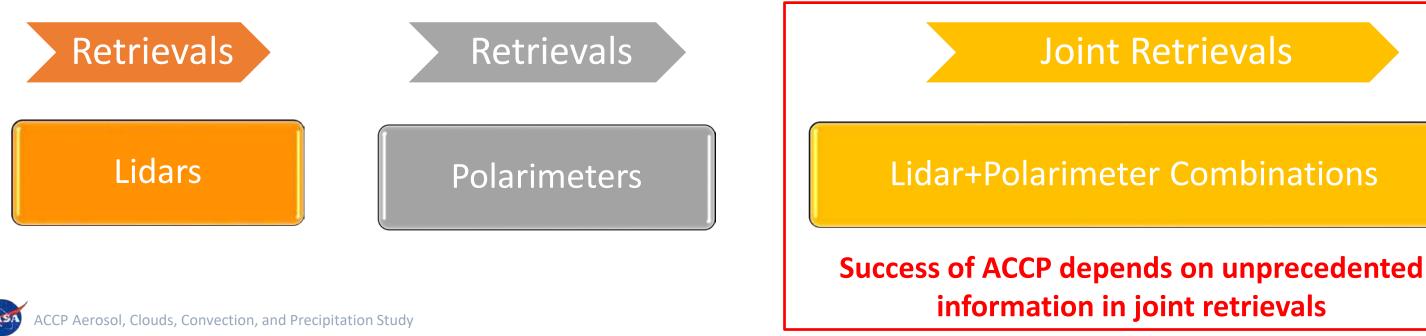
 \leftarrow US participants

 \downarrow International participants

First Name	Last Name	
Adam	Bourassa	Univ. of Saskatchewan
Marjolaine	Chiriaco	IPSL
Flavien	Cornut	CNRM, Aerosols
Juan	Cuesta	LISA/Univ. of UPEC, Frenc
Oleg	Dubovik	LOA/CNRS, Aerosols/Lida
Laaziz	El Amraoui	CNRM, Aerosols
Anton	Lopatin	LOA/CNRS, Aerosols/Lidar
Tomoaki	Nishizawa	NIES-Japan
Roseline	Schmisser	CNES, lidar
Solene	Turquety	LMD

Affiliation

ch coPI for ACCP-Aerosols


ar

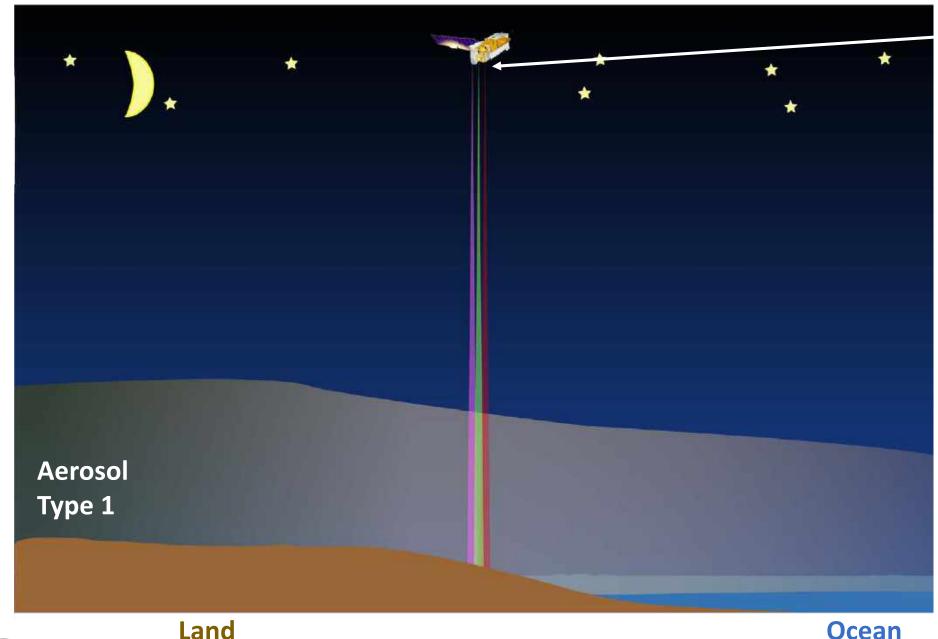
SIT-A: People and Tasking

- For each instrument type/combination, various groups pursue independent approaches
- Differences in methodologies & algorithms are an advantage to the evaluation process

Approach	Groups @
DRS: Direct Retrieval Simulation	LaRC+GISS, GSFC, OU, LISA+CNES+Lille
RDA: Real data analysis	LaRC+GISS, GSFC, OU, Lidar Working Group (UWisc+LaRC+G
ICA: Information content analysis	LaRC+GISS, OU
SPA: Statistical performance analysis	LaRC, GSFC

Joint Retrievals

GSFC)

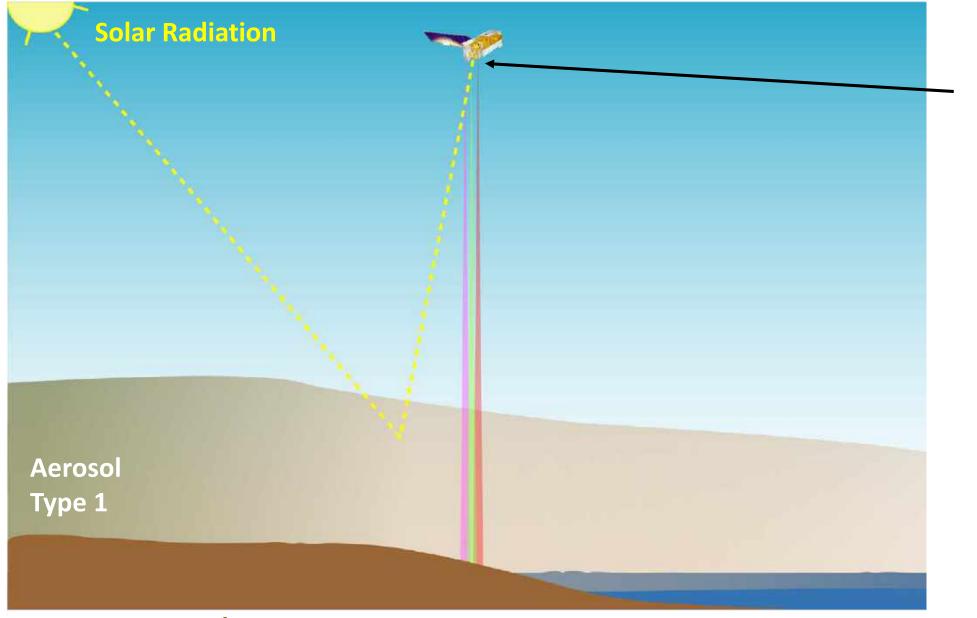

Lidar:

Backscatter lidar (lidar 9) measures attenuated aerosol backscatter

HSRL (lidar 5/6) measures true aerosol backscatter and extinction.

 \rightarrow aerosol backscattering and extinction contain information on aerosol concentration, size and composition

 \rightarrow Both backscatter and HSRL lidars measure depolarization (related to particle shape /type).


Lidar:

Backscatter lidar (lidar 9) measures attenuated aerosol backscatter

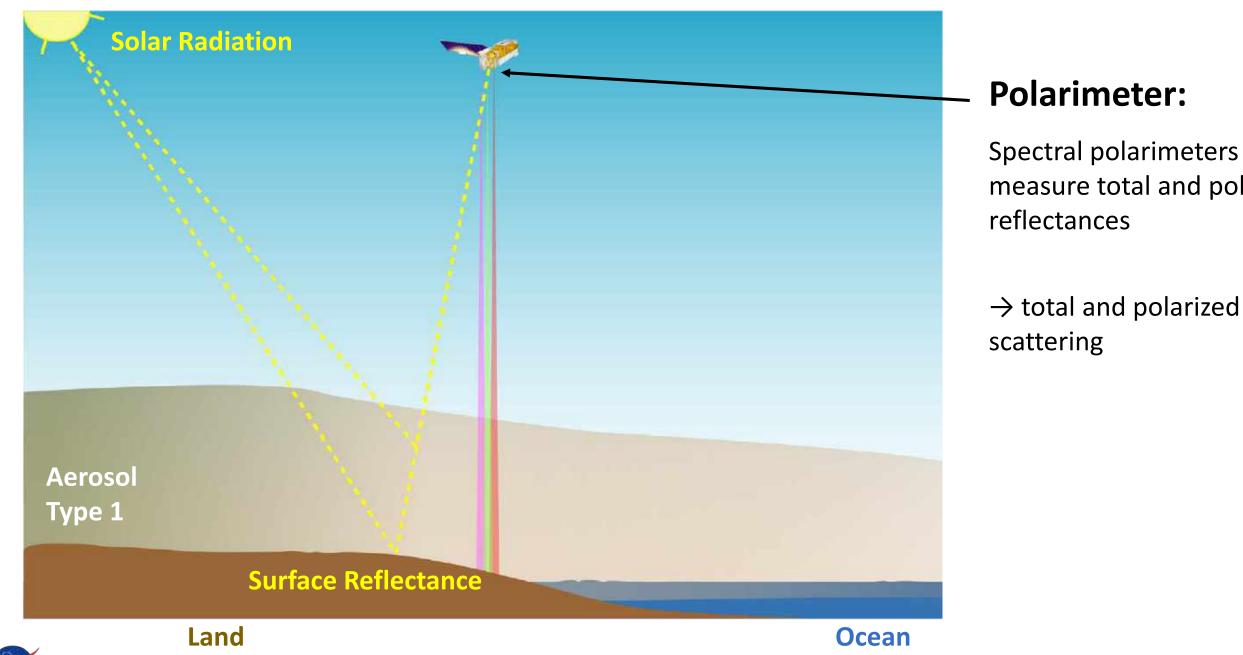
HSRL (lidar 5/6) measures true aerosol backscatter and extinction.

→ aerosol backscattering and extinction contain information on aerosol concentration, size and composition

→ Both backscatter and HSRL lidars measure depolarization (related to particle shape /type).

Land ACCP Aerosol, Clouds, Convection, and Precipitation Study

Ocean

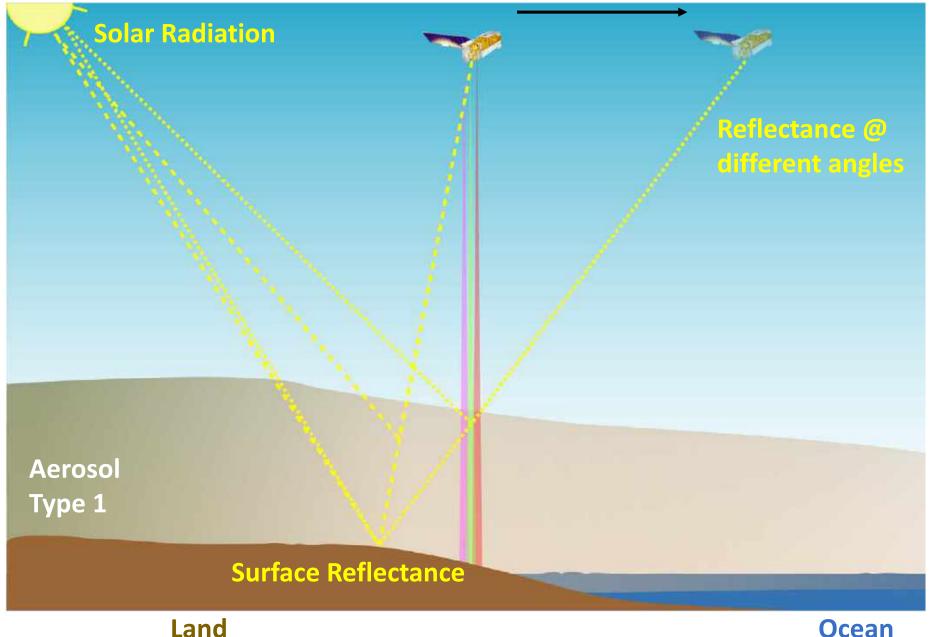

Polarimeter:

Spectral polarimeters measure total and polarized reflectances

scattering

\rightarrow total and polarized aerosol

ACCP Aerosol, Clouds, Convection, and Precipitation Study

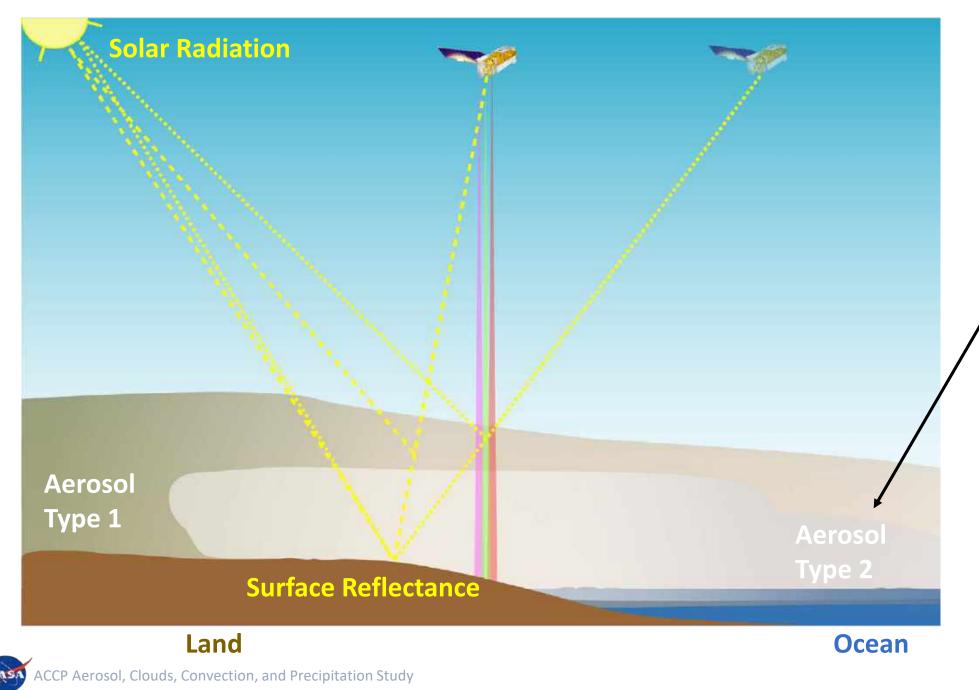


measure total and polarized

 \rightarrow total and polarized aerosol

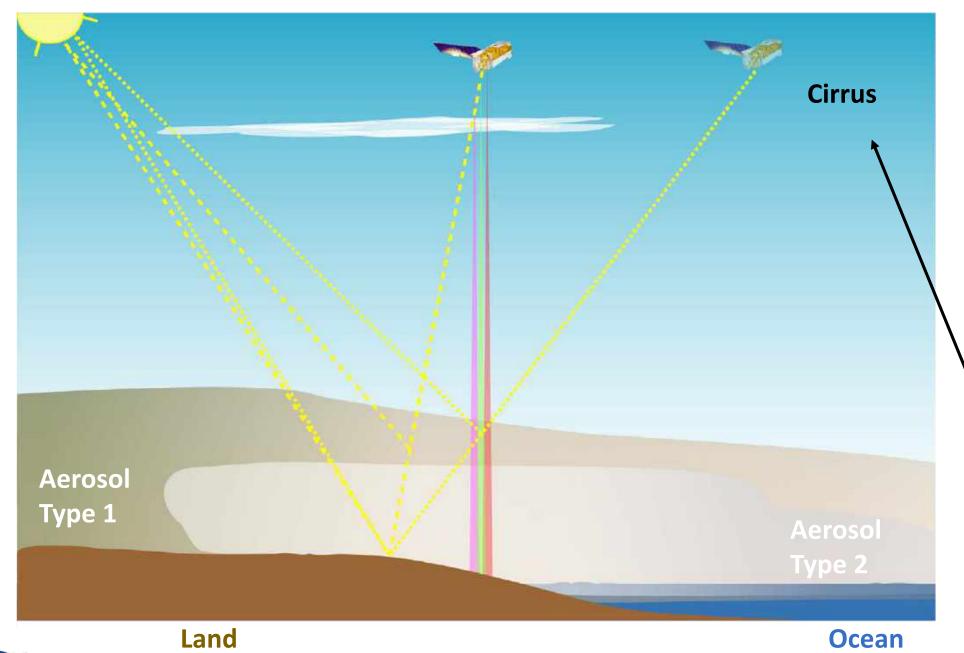
Platform progresses

Polarimeter:


Spectral polarimeters measure total and polarized reflectances

 \rightarrow total and polarized aerosol scattering

 \rightarrow containing information on aerosol concentration, size and composition



Some challenges to aerosol remote sensing (RS):

- Surface reflectance
- Aerosol vertical distributions

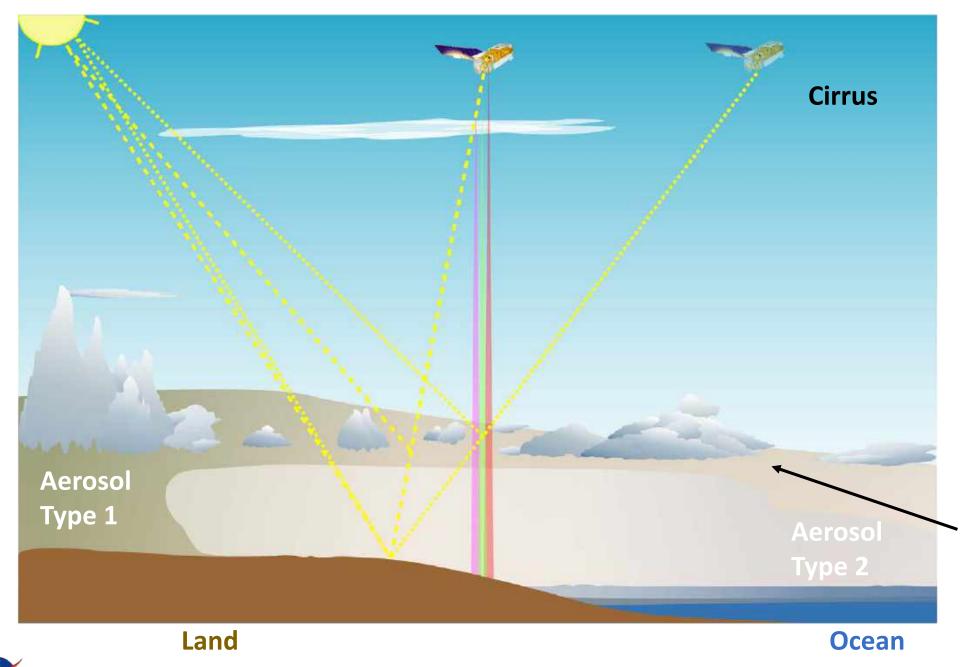
• Lidar signals provide independent constraints on vertical distributions Atmospheric aerosol types are often mixed in type, and vary rapidly ~10km

Some challenges to aerosol remote sensing (RS):

- Surface reflectance
- Aerosol vertical distributions

- Cirrus clouds

 - challenge for active RS


ACCP Aerosol, Clouds, Convection, and Precipitation Study

"But nature did not deem it her business to make the discovery of her laws easy for us.", Einstein 1911

• Lidar signals provide independent constraints on vertical distributions • Atmospheric aerosol types are often mixed in type, and vary rapidly ~10km

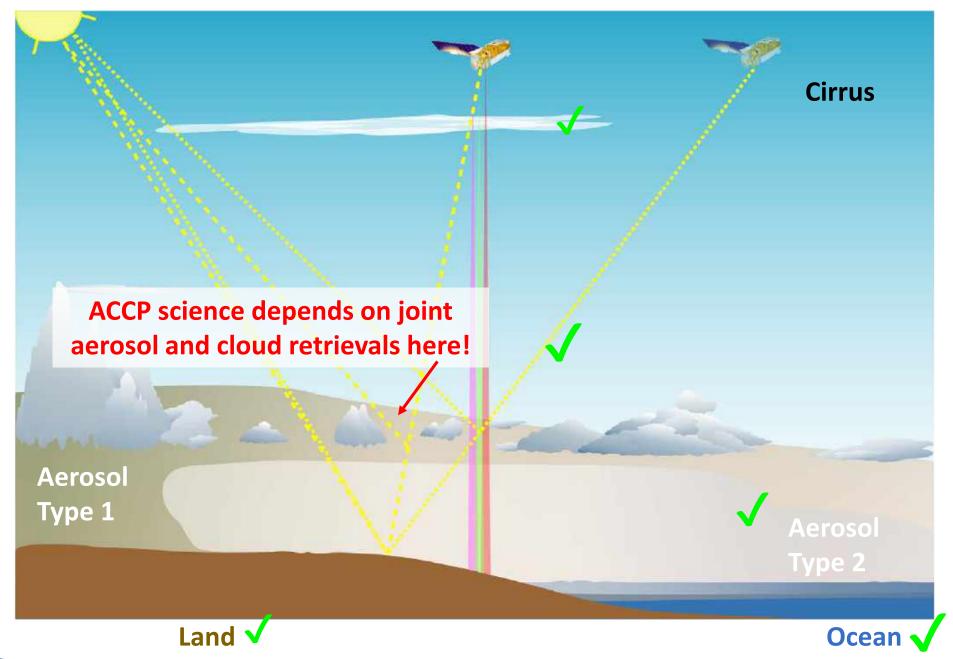
• major challenge for passive aerosol RS

Some challenges to aerosol remote sensing (RS):

- Surface reflectance
- Aerosol vertical distributions

- Cirrus clouds

 - challenge for active RS
- Low clouds
- challenge for active RS



• Lidar signals provide independent constraints on vertical distributions • Atmospheric aerosol types are often mixed in type, and vary rapidly ~10km

• major challenge for passive aerosol RS

• challenge for passive aerosol RS

Complexities Addressed in Retrieval Simulations

SIT-A

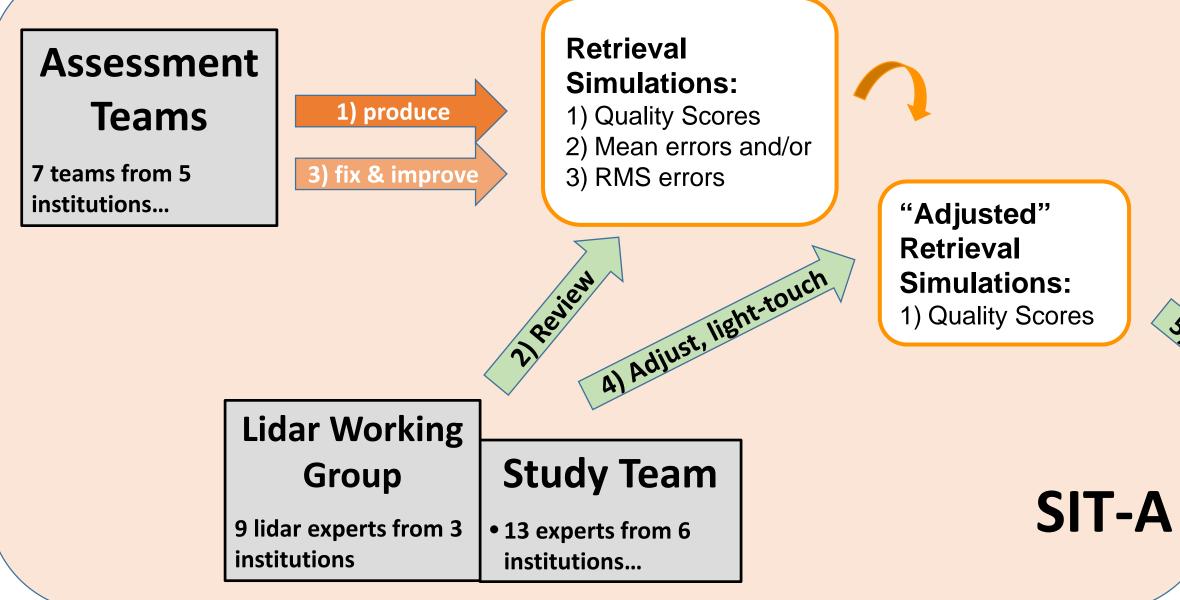
- Focused on L2 retrievals
- "defines" truth
- from thin clouds. (Thorsen et al.)

LWG (Lidar Working Group, Eloranta et al.) • Focused on lidar performance and design

- requirements
- capabilities
- Led to lidar design improvements

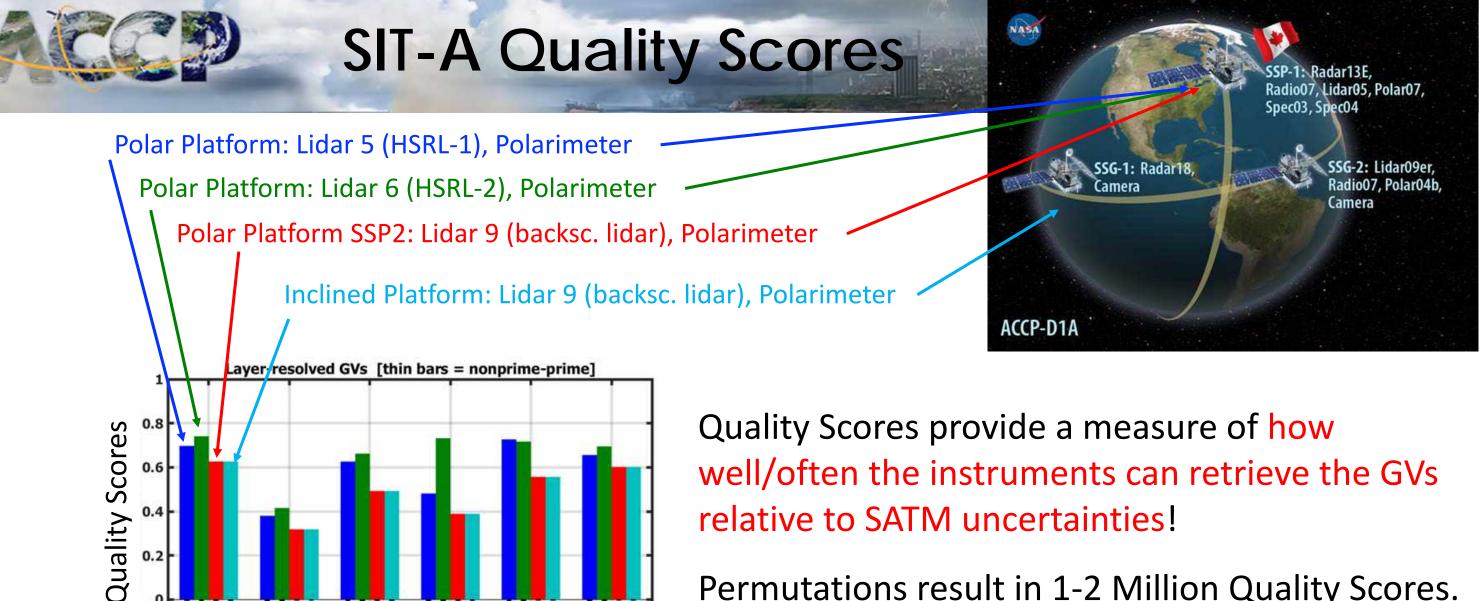
CCP Aerosol, Clouds, Convection, and Precipitation Study

• Primarily used synthetic data, capturing various aerosol types and vertical distributions


• Approach captures forward model errors &

 Land and ocean surfaces & Daytime/Nighttime CALIPSO indicates that 51% of aerosol retrieval opportunities contain additional uncertainty

• Primarily used real data to assess retrieval


• Four actual combined aerosol/cloud scenes

The SIT-A Architecture Evaluation Approach: Workflow

SJ Interface Value Framework Team

Permutations result in 1-2 Million Quality Scores.

Selection of most important Aerosol Geophysical Variables \rightarrow

AODEVISCO

19

23

AOD UN COI

25

AOD VIS COI

32

ARIR VIS COL

12

AEFREPBL

AOD VIS COL

3

Additional Outcomes - 1

Advanced Retrieval Algorithm Development

Lidar Instrument Design changes

A retrieval community (joint lidar+polarimeter) - inclusive & respectful - coalesced around learning & results - collaborative in spirit & action

Forward signal simulators

Additional Outcomes - 2

Satellite Missions

Research Topic

Remote Sensing of Cloud, Aerosols, and Radiation from Satellites

Special Section in Frontiers of Remote Sensing has received 26 papers, mostly from the ACCP community!

A Combined Lidar-Polarimeter Inversion Approach for Aerosol Remote Sensing over Ocean

Feng Xu^{1*}, Lan Gao¹, Jens Redemann¹, Flynn Connor¹, William R. Espinosa², Arlindo Da Silva², Snorre Stamnes³, Sharon P. Burton³, Xu Liu³, Richard Ferrare³, Brian Cairns⁴, Oleg Dubovik⁵

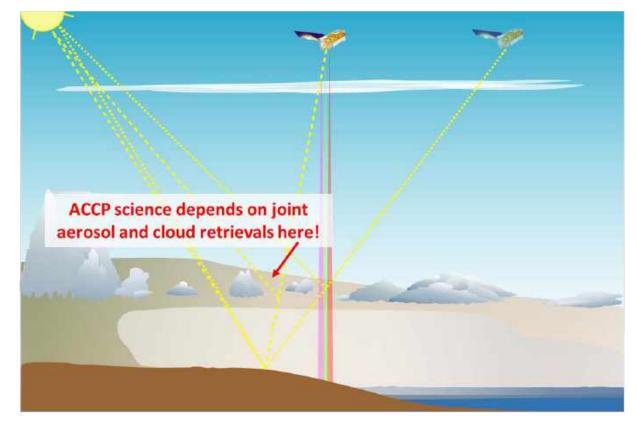
¹School of Meteorology, College of Atmospheric and Geographic Sciences, University of Oklahoma, United States, ²Goddard Space Flight Center, National Aeronautics and Space Administration, United States, ³Langley Research Center, National Aeronautics and Space Administration (NASA), United States, ⁴Goddard Institute for Space Studies (NASA), United States, ⁵UMR8518 Laboratoire d'optique atmosphèrique (LOA), France

Major Findings - 1

Multiple complementary approaches are important (also LWG and SIT-A) > Joint (lidar+polarimeter) retrieval simulations reduce retrieval errors > SIT-A Quality Scores (QS) reflect physically plausible and significant differences:

Quality Scores
Polarimeter +
HSRL-2>Quality Scores
Polarimeter +
$$\Delta = 0.06-0.14$$
QQuality Scores
Polarimeter +
HSRL-1> $\Delta = 0.17-0.25$ PQuality Scores
Polarimeter +
Bac>P

> These observational capability differences can mean the difference between meeting and not meeting threshold science requirements!


olarimeter + ckscatter lidar

uality Scores

Major Findings – Additional Outcomes

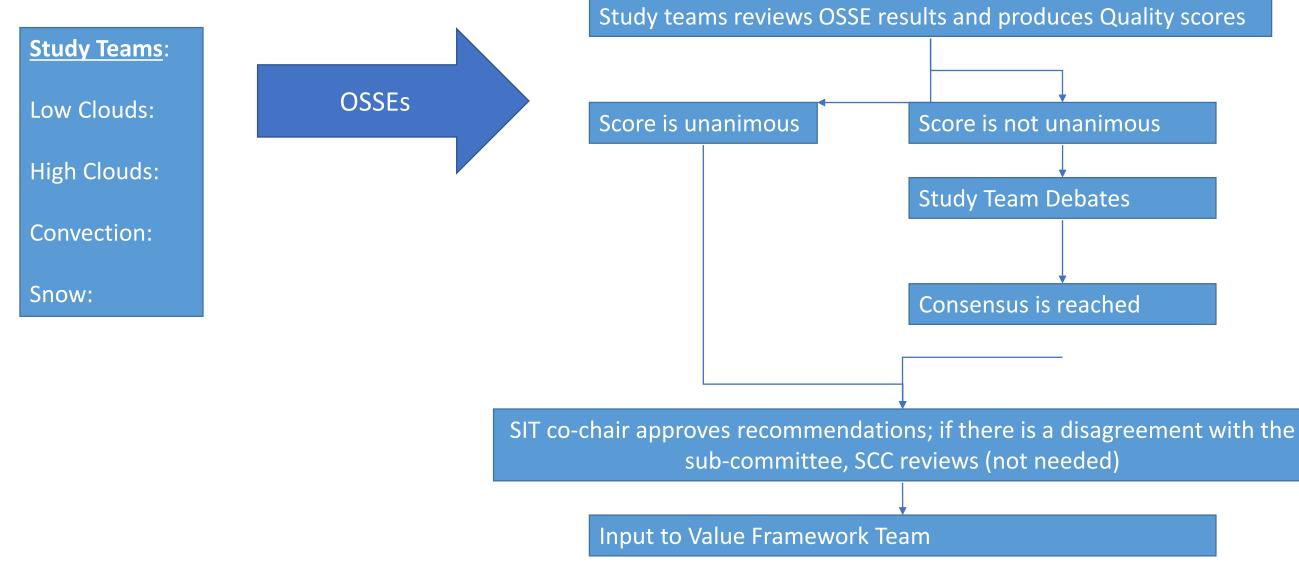
- LWG confirmed feasibility of spaceborne HSRL observations
- Significantly improved algorithms (far beyond previously published skill)
- French partners demonstrated notable differences in particle typing capabilities among lidars
- Algorithms are key to the synergistic observations of ACCP
- Collaborative, inclusive retrieval community, coalesced around results
- Need to expand and enhance joint retrievals

ACCP Aerosols, Clouds, Convection, and Precipitation Study

ACCP Science Impact Team – Clouds Convection Precipitation (SIT-CCP) Summary of Activities for HQ review

February 4, 2021

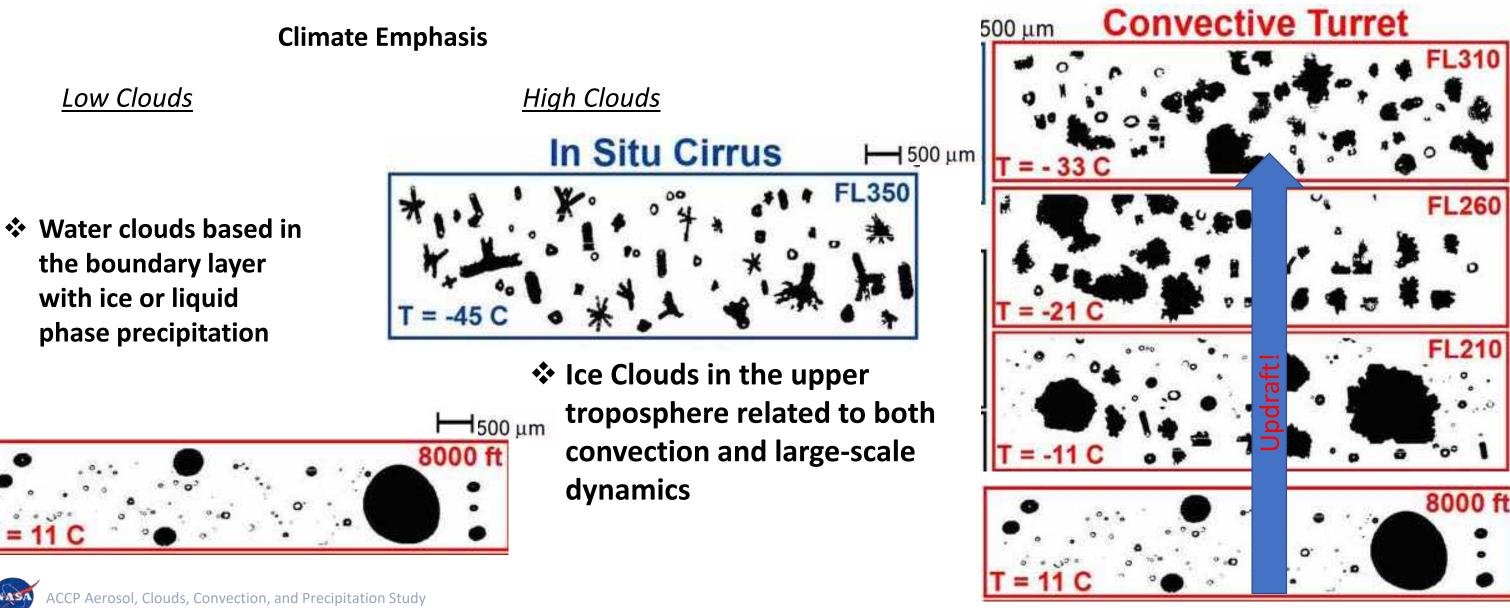
The SIT-CCP Study Team Leads Derek Posselt, Ian Adams, Timothy Lang, Pavlos Kollias



• **SIT-CCP Charter:** ... to critically evaluate retrieval uncertainties given measurement architectures for individual cloud and precipitation Geophysical Variables comparing them to SATM requirements.

> Quality \equiv Fraction of simulated retrievals that provide uncertainties within SATM requirements

SIT-CCP Implementation


What We Accomplished for ACCP

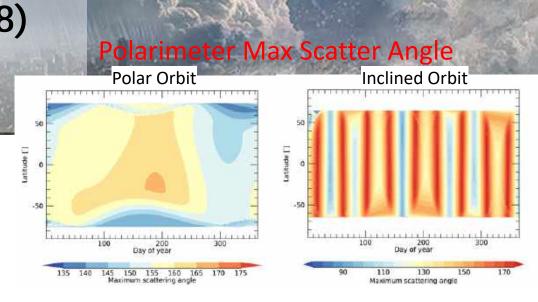
- Accomplished the first-order objective of our charter. \bullet
 - Began 18 months ago with lessons learned from Aerosol Clouds Ecosystems (ACE).
 - Goal: Relative to science needs, formalize a methodology to objectively evaluate remote sensing architectures
 - After 6 Architecture Evaluation Workshops over 14 months, we are now quite nimble with a \bullet set of tools and a general methodology to critically evaluate subtle nuances to complicated remote sensing architectures and problems.
- Stood up a team of young innovative scientists who now have a cutting edge war chest of \bullet methodologies that can be adapted to meet the scientific and algorithmic challenges of the ACCP Era.
- Realization that to meet the process-oriented science objectives of ACCP, measurement • Synergies are fundamental. The level 2 algorithm suite will naturally evolve to exploit these synergies among radar, lidar, radiometer, polarimeter. This is a significant advance over A-Train.

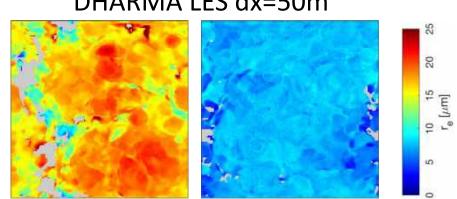
How SIT-CCP's Task Differed from SIT-A

Microphysics courtesy Dave Mitchell

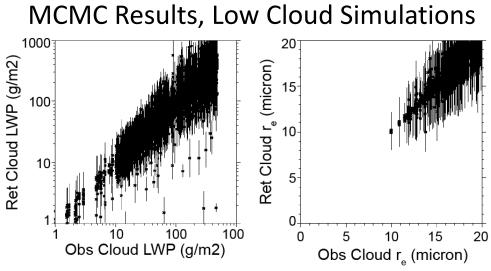
Convection Emphasis

Climate Emphasis – Low Clouds (01, 08)


Study Team Lead: Derek Posselt Study Team Members: Matt Lebsock, Rick Schulte, Yuli Liu, Jay Mace, Bastiaan Van Diedenhoven


Low Cloud Scoring Methods:

Tools: existing observations + sampling studies


+ high resolution models + **Bayesian retrieval** algorithms (Optimal **Estimation and Markov** Chain Monte Carlo)

- Existing observations:
 - spectrometer, multi-angle imager, polarimeter (aircraft and space)
 - microphysics from aircraft measurements (IPHEX, RICO, OLYMPEX)
 - disdrometer obs mapped to Z(z), Tb, and PIA
- Model output subpixel variability
 - LES and CRM for Sc and Cu ullet
 - ECCC (50 meter long-domain) Spectrum of low cloud types
- Bayesian Retrievals quantify uncertainty
 - **Optimal Estimation**
 - Markov chain Monte Carlo



DHARMA LES dx=50m

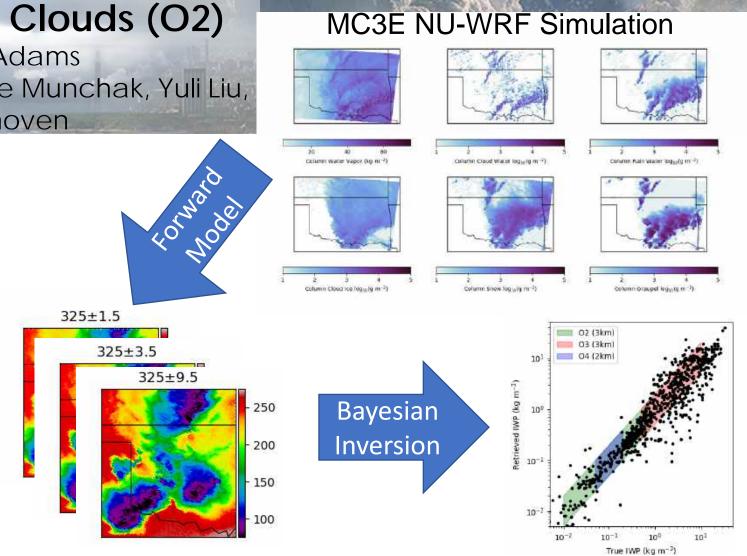
r_{eff} Polluted

Climate Emphasis – High Clouds (O2)

Study Team Lead: Ian Adams Study Team Members: Min Deng, Joe Munchak, Yuli Liu, Bastiaan Van Diedenhoven

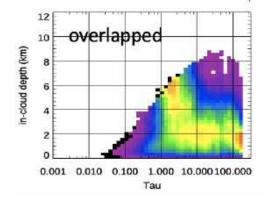
Cloud-resolving models (ECCC, NU-WRF)

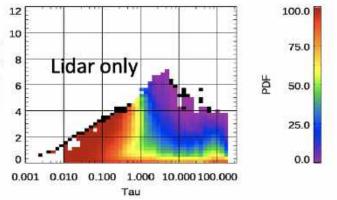
- Full atmospheric column •
- Moderate horizontal resolution (down to 1 km)

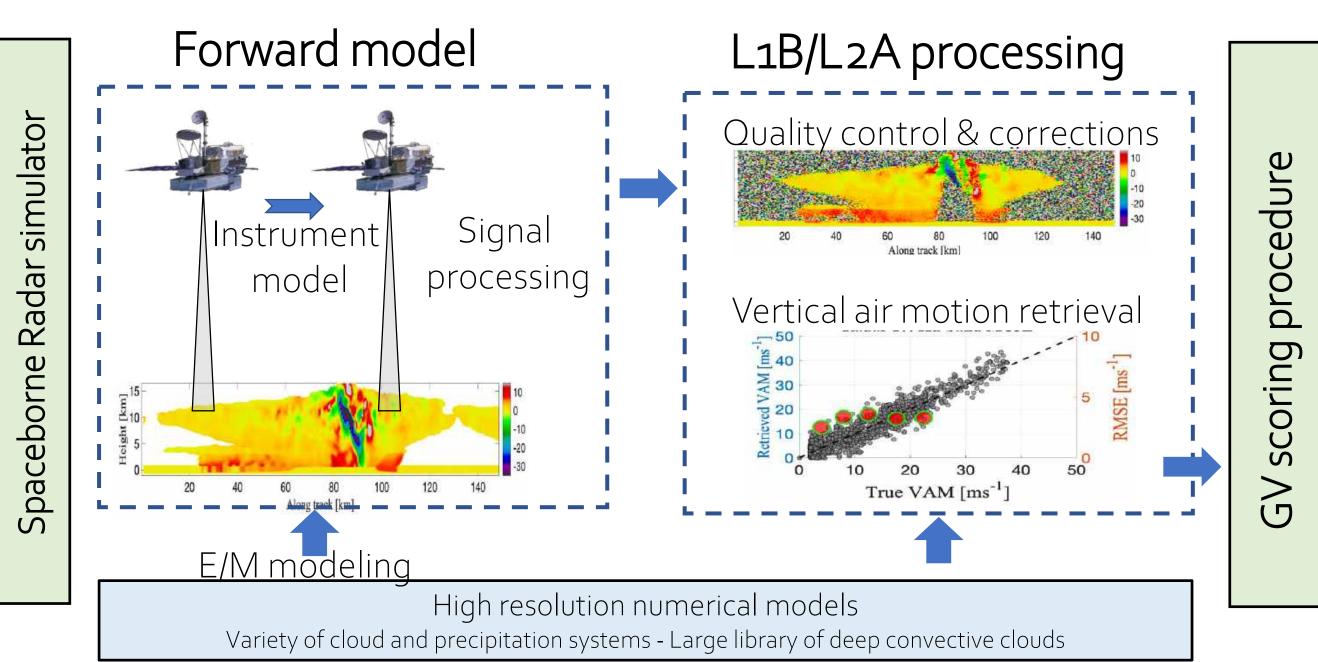

Synthetic & observational retrievals

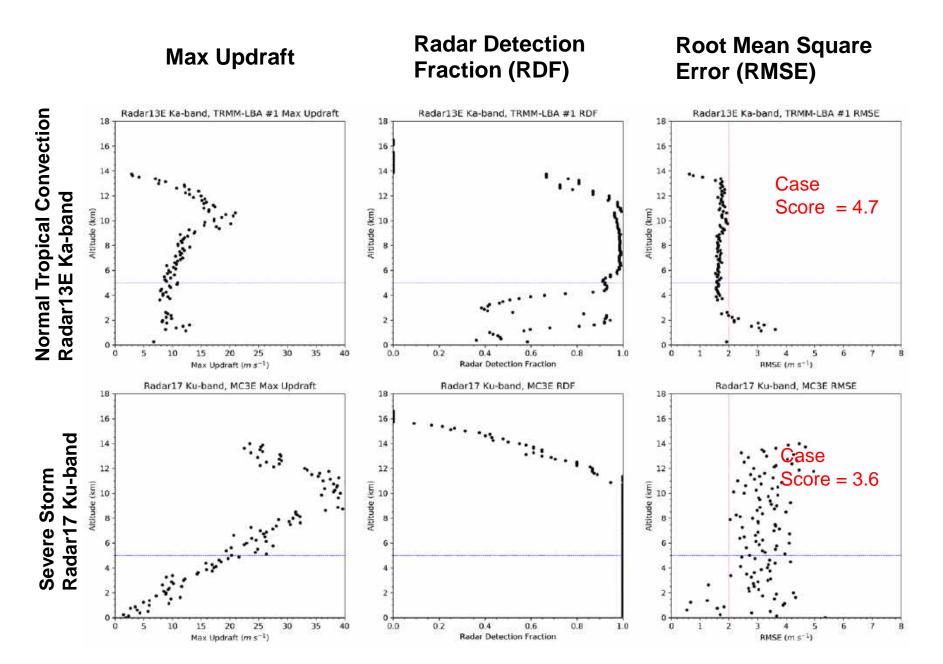
- Monte Carlo Integration ۲
- **Optimal Estimation**
- Synergistic lidar/radar & radar/radiometer
- Doppler-based vertical motion


Sampling studies


- Polarimeter rainbow sampling (polar vs inclined)
- Radar/lidar overlap
- Ku vs Ka band
- Radiometer resolution impacts




Radar/Lidar Cloud Sampling Analysis Based on 2C-ICE Product

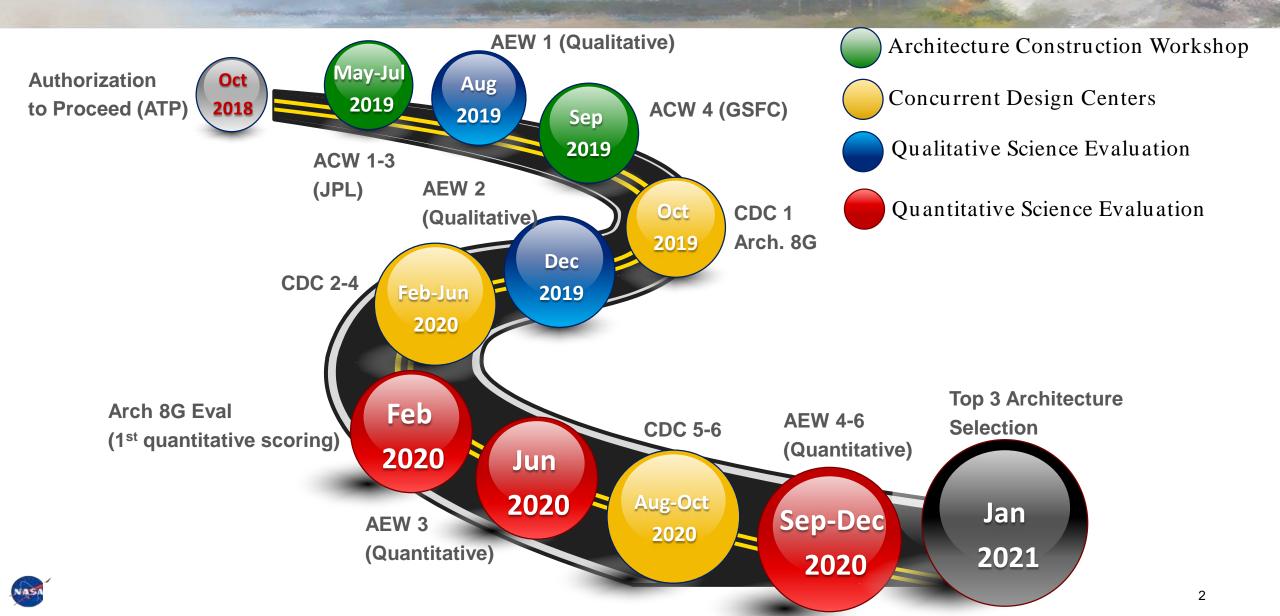

Convection (O3)

Study Team Lead: Tim Lang Study Team Members: Pavlos Kollias, Mircea Grecu, Dan Cecil, Joe Munchank, Rachel Storer, Ziad Haddad, Patrick Gatlin

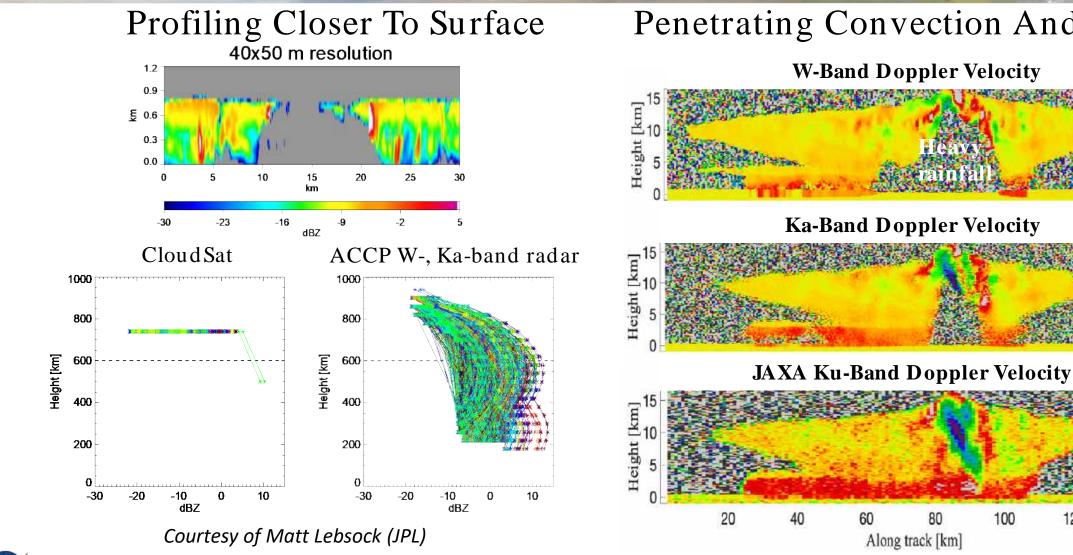
Example Scoring Procedure (O3): In-Cloud Vertical Air Velocity (IVAV.z)

- Evaluate output from radar simulator
- Each level is weighted evenly between echo-top height and lowest level considered (0 or 5 km)
- Case Score = Sum(RDF * 5.0 / Weight) over all levels with RMSE <= limit, plus Sum(0.0 / Weight) for RMSE > limit (or no detection)
- RMSE limit is larger of 2 m s⁻¹ or 30% of max updraft; Maximum score = 5.0
- Final score is average of all seven O3relevant cases (range from shallow convection to severe storm)

ACCP Aerosol, Clouds, Convection, and Precipitation Study



- Realization that Emerged from CCP-SIT Effort:
 - Measurement synergies are fundamental to ACCP Success
 - CCP-science relies on full suite of A and CCP instrumentation.
 - ACCP is an integrate observing system
 - To meet CCP Science needs, the level 2 algorithm suite that is evolving for ACCP must exploit synergies among radar, lidar, radiometers and polarimeters.


How Science Benefit Scoring Informed A Priority MindMap That Led to the Top 3 Candidate Architectures

Scott Braun and Arlindo da Silva

Science Evaluation Road Map

Lessons Learned—Radar

ACCP Aerosol, Clouds, Convection, and Precipitation Study

Simulations above produced by Pavlos Kollias (SUNY Stony Brook)

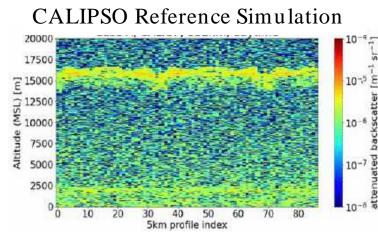
100

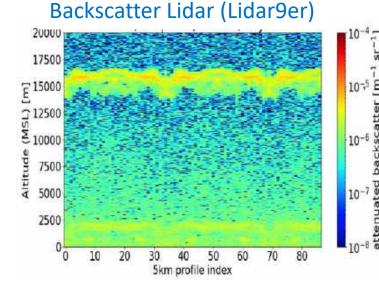
Penetrating Convection And Doppler

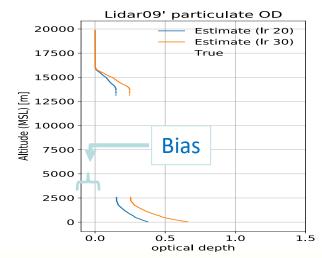
-20

-30

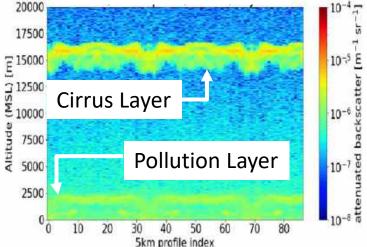
-10

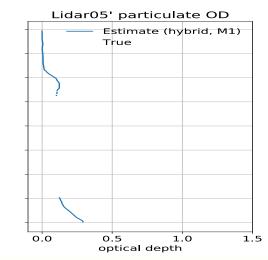

-20


-10


40

Lessons Learned—Lidar

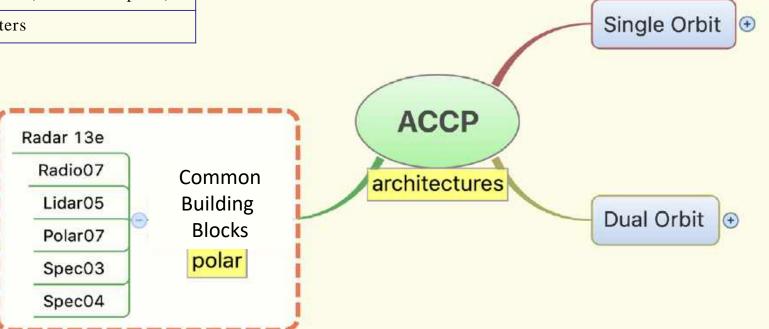

- All lidars provide improved signal to noise (SNR) compared to CALIPSO
- HSRL provides direct measurement of particulate backscatter
- HSRL(+UV) > HSRL > Backscatter



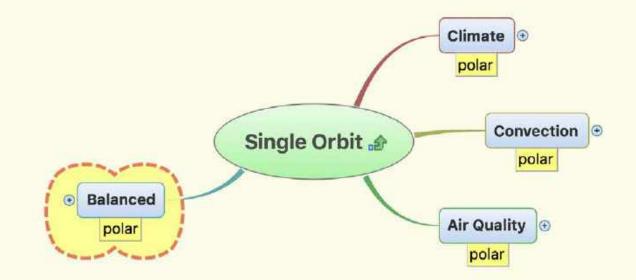
HSRL (Lidar05)

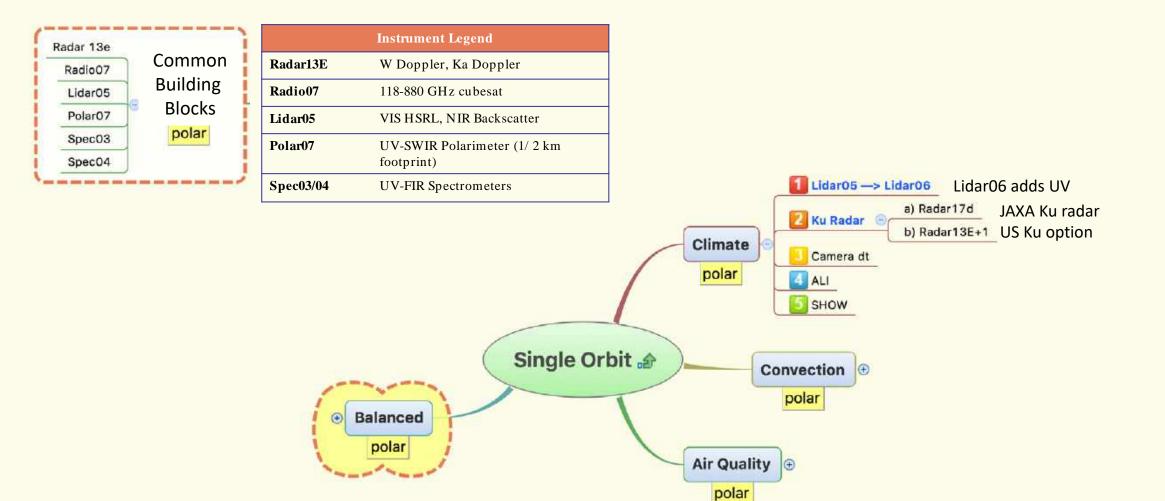
ACCP Aerosol, Clouds, Convection, and Precipitation Study

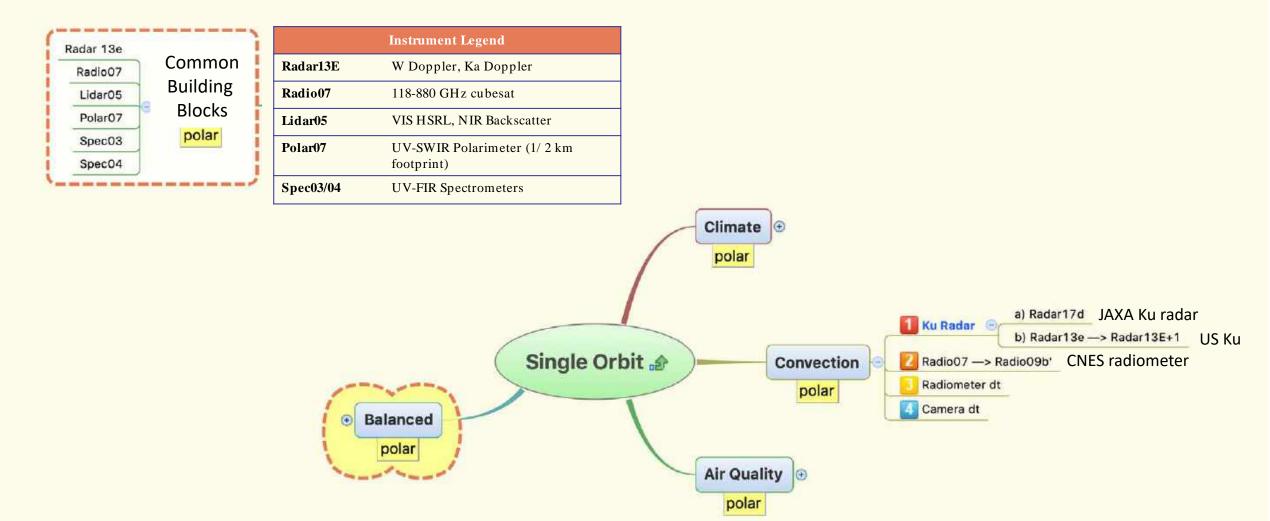
Simulations produced ACCP Lidar Working Group

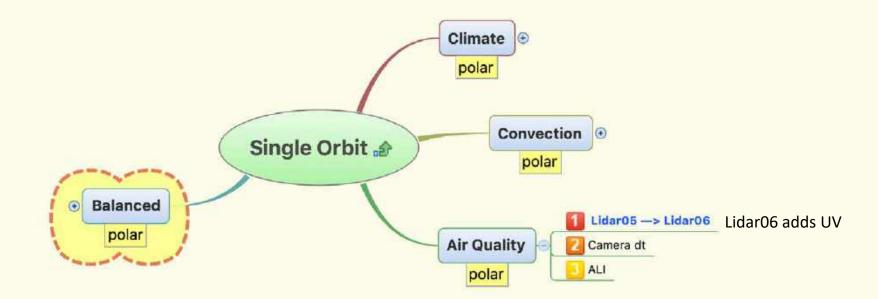

Lessons Learned—Passive Instruments

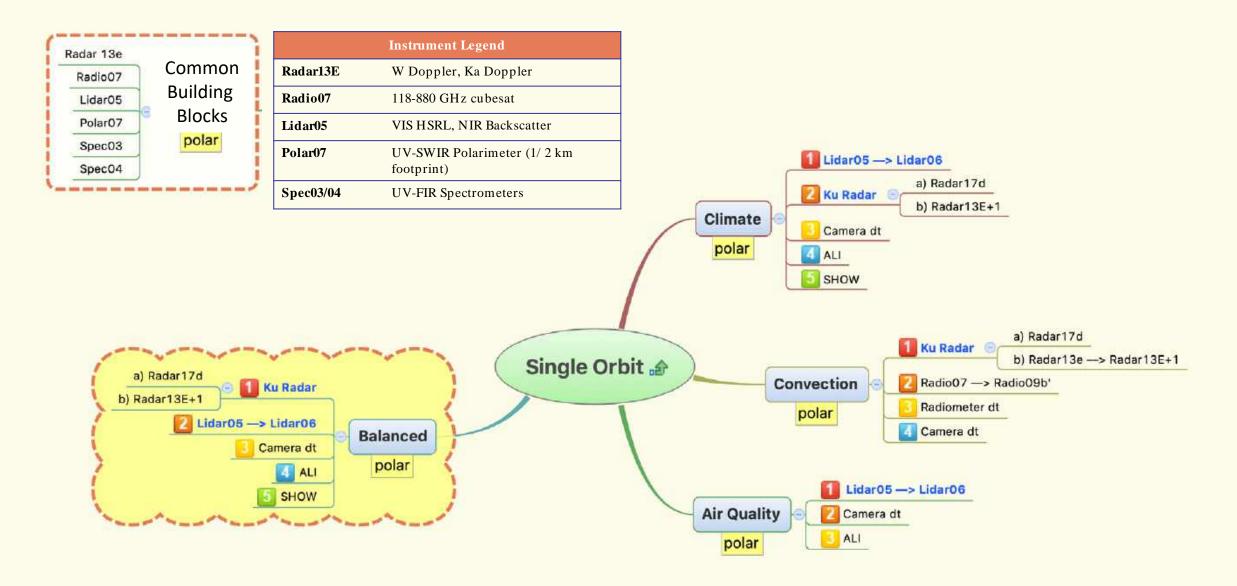
- Passive microwave essential for context and precipitation constraints, cloud ice properties
 - -Convection-resolving resolution
 - -Applications desire for 89 GHz
 - -Time-differenced measurements likely useful, but retrievals not sufficiently mature
- Polarimeters provide essential constraint for aerosol retrievals

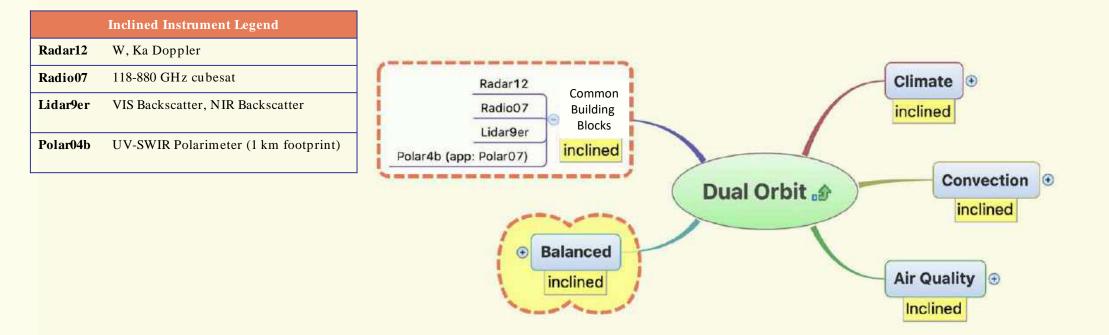

-Higher spatial resolution generally preferred over wider swath

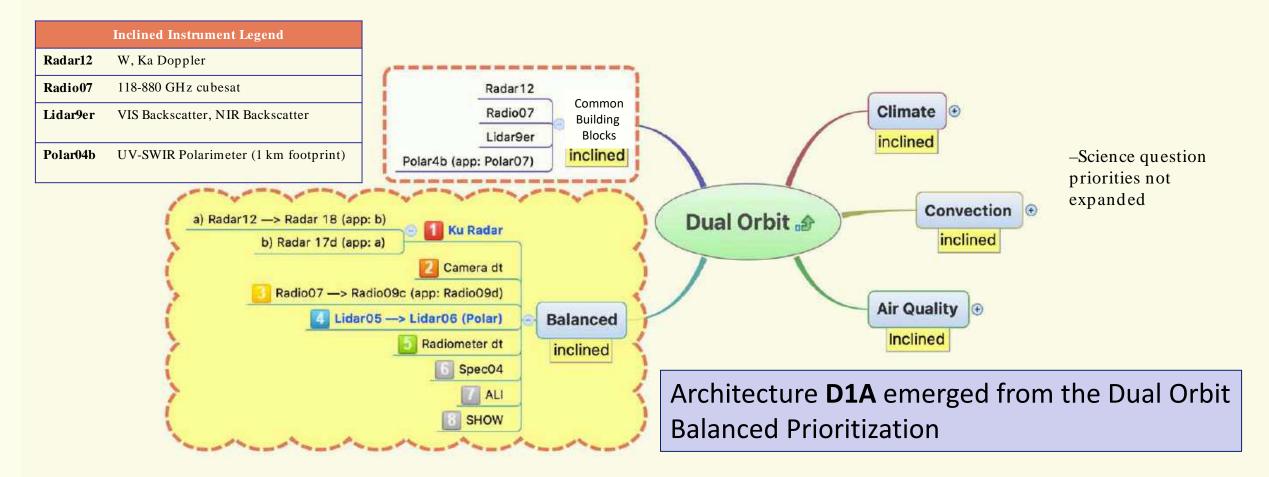

- Spectrometers essential for radiation measurements collocated with clouds and aerosols
- Stereo cameras provide innovative measurements of cloud and aerosol plume dynamics
 - Identified as the highest priority among the different types of time-differenced measurements
 - -Reasonably mature concept and deliverables
- ALI and SHOW provide valuable information on upper troposphere/lower stratosphere aerosols and moisture


Instrument Legend			
Radar13E	W Doppler, Ka Doppler		
Radio07	118-880 GHz cubesat		
Lidar05	VIS HSRL, NIR Backscatter		
Polar07	UV-SWIR Polarimeter (1/2 km footprint)		
Spec03/04	UV-FIR Spectrometers		


Radar 13e	·)		Instrument Legend
Radio07	Common	Radar13E	W Doppler, Ka Doppler
Lidar05	Building	Radio07	118-880 GHz cubesat
Polar07	Blocks	Lidar05	VIS HSRL, NIR Backscatter
Spec03	polar	Polar07	UV-SWIR Polarimeter (1/ 2 km
Spec04			footprint)
		Spec03/04	UV-FIR Spectrometers




Radar 13e	·}		Instrument Legend
Radio07	Common	Radar13E	W Doppler, Ka Doppler
Lidar05	Building	Radio07	118-880 GHz cubesat
Polar07	Blocks	Lidar05	VIS HSRL, NIR Backscatter
Spec03	polar	Polar07	UV-SWIR Polarimeter (1/ 2 km
Spec04			footprint)
		Spec03/04	UV-FIR Spectrometers



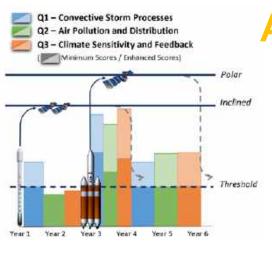
Architectures P1, P2 emerged from the Single Orbit Balanced Prioritization

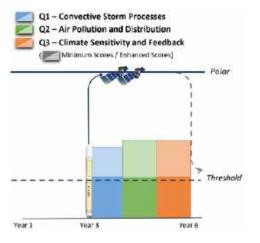
Radar 13e)		Instrument Legend
Radio07	Common	Radar13E	W Doppler, Ka Doppler
Lidar05	Building	Radio07	118-880 GHz cubesat
Polar07	Blocks	Lidar05	VIS HSRL, NIR Backscatter
Spec03 Spec04	polar	Polar07	UV-SWIR Polarimeter (1/ 2 km footprint)
		Spec03/04	UV-FIR Spectrometers

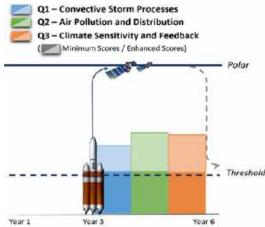
adar 13e	1		Instrument Legend
Radio07	Common	Radar13E	W Doppler, Ka Doppler
Lidar05	Building	Radio07	118-880 GHz cubesat
Polar07	Blocks	Lidar05	VIS HSRL, NIR Backscatter
Spec03	polar	Polar07	UV-SWIR Polarimeter (1/ 2 km
Spec04		()	footprint)
		Spec03/04	UV-FIR Spectrometers

ACCP Aerosols, Clouds, Convection, and Precipitation Study

Science Considerations Across Architectures







ACCP Science Considerations Across Architectures

Overall Architecture Rank Closely Mimics $D1A > P1 \gtrsim P2$ Science Benefit Rank

The following slides highlight the relative science value of the 3 ACCP Architectures considering the 3 primary DS Questions and other science-related merit

C-2 Climate Sensitivity, Cloud Feedback, Aerosol Forcing

ACCP Science Across Architectures

Convective Storm Processes

Pros: Provides capabilities for measuring vertical motions from shallow to deep convection. Measurements span light to heavy precipitation with GPM-like swath for 3D structure and precipitation mapping. Cons: Radiometer footprints are large for convective studies. No information on critical sub-daily varying processes.

Air Pollution and Distribution

Pros: Lidar, polarimeter, radar combination

Convective Storm Processes

Pros: Provides capabilities for measuring vertical motions from shallow to deep convection. Measurements span light to heavy precipitation. Cons: Lack of radar swath degrades ability to characterize 3D structure and do precipitation mapping. Radiometer footprints are large for convective studies. No information on critical sub-daily varying processes.

Air Pollution and Distribution

Pros: Lidar, polarimeter, radar combination provides unprecedented

ACCP-D1A **Convective Storm Processes**

NASA

are large for convective studies.

Air Pollution and Distribution Desar Dallatant abana taninatian and annaal nanaana fuadiatutha ita in liabt ta b

Let's Breakdown the Baseball Card Text into Simple Tables and Highlights

characterization of aerosol size, concentration. Cons: Lack of inclined orbit is detrimental to characterization of sub-daily aerosol processes.

Climate Sensitivity and Feedback

Provides key measurements for low and high cloud feedback, direct and indirect aerosol radiative effects, and cold cloud processes. Radar profiling to near surface and tandem stereo cameras offer significant advances for low clouds and snowfall. ALI and SHOW provide information for the important upper-troposphere/lower-stratosphere (UTLS) region. Lidar UV channel aids the characterization of aerosol

absorption.

ACCP Aerosol, Clouds, Convection, and Precipitation Study

ability to characterize precipitation and its impacts on aerosol wet removal. Lack of inclined orbit is detrimental to characterization of sub-daily aerosol processes.

Climate Sensitivity and Feedback

Pros: Provides key measurements for low and high cloud feedback, direct and indirect aerosol radiative effects, and cold cloud processes. Radar profiling to near surface and cameras offer significant advances for low clouds and snowfall. ALI and SHOW provide information for the important upper troposphere/lower stratosphere (UTLS) region. Lidar UV channel aids the characterization of aerosol absorption. Cons: Lack of radar swath degrades ability to relate convective properties to high clouds.

channel negatively impacts the characterization of aerosol properties. Lack of radar swath degrades ability to characterize precipitation and its impacts on aerosol wet removal.

Climate Sensitivity and Feedback

Pros: Provides key measurements for low and high cloud feedback, direct and indirect aerosol radiative effects, and cold cloud process studies. Radar profiling to near surface and cameras offer significant advances for low clouds and snowfall. Cons: Lack of radar swath degrades ability to relate convective properties to high clouds. Loss of lidar UV channel degrades characterization of aerosol absorption, and the ability to get consistent climate record for cloud feedback.

SP-1: Radar13E, Radio07, Lidar05, Polar07, Spec03, Spec04

> SSG-2: Lidar09er, Radio07, Polar04b Camera

SSG-1: Radar18.

Pros: Measurement of diurnally varying vertical motions for shallow to deep convection, spanning light to heavy precipitation, in inclined orbit. Additional measurements in polar orbit for weak convection/upper levels of strong convection. Cons: Best convection capabilities not coincident with best aerosol capabilities. Lack of radar swath degrades ability to characterize 3D structure and do precipitation mapping. Radiometer footprints

Most Relevant Instruments & Features for W-4

Radar13E: Ka-D, W-D Radar18: Ku-D, W Radio07 Camera ∆t & Inclined Orbit

Radar13E: Ka-D, W-D Radar17: Ku-D (<u>wide swath</u>) Radio07 Camera ∆t

Radar13E+1: Ku-D, Ka-D, W-D Radio07 Camera ∆t

W-4 Convective Storm Processes

Attribute	P1	P2	D1A
Shallow-to-Deep	Yes	Yes	Yes
Light to Heavy	Yes	Yes	Yes
Convective Scale Radiometer Footprints	No	No	No
Diurnal Variations (Inclined)	No	No	Yes
Tropics, Tropical Mid-Lat Weather Forcing & S2S Enriched (Inclined)	No	No	Yes
Radar w/ Wide Swath	Yes	No	No

Major distinguishing features

- D1A has <u>inclined orbit</u>, enables richer examination of long-standing science challenges: diurnal, S2S, and tropical-extratropical teleconnections
- P1 has a <u>wide swath</u> radar, enables richer synoptic context and process examination

richer examination ges: diurnal, S2S, nnections oles richer synoptic

SSG-1: Radar18, Camera

2nd

ACCP-D1A

SP-1: Radar13E, (adio07, Lidar05, Polar07,

SSG-2: Lidar09er, Radio07, Polar04b,

D1A

Spec03, Spec04

Most Relevant Instruments & **Features for W-5**

Lidar06: HSRL w/ UV Polar07: Radar13E: Ka-D, W-D Radar17: Ku-D (wide swath) Camera Δt ALI

Lidar05: HSRL Polar07: Radar13E: Ka-D, W-D Radar18: Ku-D, W Camera Δt & **Inclined Orbit**

Lidar06: HSRL w/ UV

Polar07:

Radar13E+1: Ku-D, Ka-D, W-D

Camera Δt

ALI

W-5 Air Quality Processes and Distribution

Attribute	P1	P2	D1A			
Aerosol Size, Type & Concentration Characterization (HSRL+UV)	Excellent w/ Boost from UV	Excellent w/ Boost from UV	Excellent			
Aerosol Removal/Redistribution (Lidar+Polar+Radar Config)	Very Good w/ Boost from Wide Swath Radar	Very Good	Very Good			
Smoke/Volcano Plume Top Evolution (Camera ∆t)	Yes	Yes	Yes			
Extreme Smoke/Volcano Events and Relation to Convection (ALI)	Very Good w/ Boost from ALI	Very Good w/ Boost from ALI	Very Good			
Subdaily Aerosol Processes (Inclined)	NO Yes					
 Key distinguishing features All have <u>HSRL</u>, enables unprecedented aerosol characterization, P1 and P2 have added boost from UV channel. D1A has <u>inclined orbit</u>, enables examination of diurnal aerosol/AQ variations 						

Other distinguishing features

- P1 and P2 have <u>ALI limb spectrometer</u>, provides a boost to extreme plume event examination
- P1 has a **wide swath** radar, provides a boost to aerosol removal/redistribution • studies

Most Relevant Instruments & Features for C-2

C-2 Climate Sensitivity, Cloud Feedback, Aerosol Forcing

Lidar06: HSRL w/ UV	Attribute	P1	P2	D1A
Polar07:	Low and High Cloud Feedback	Yes	Yes	Yes
Radar13E: Ka-D, W-D	Direct & Indirect Aerosol Radiative Effects	Yes	Yes	Yes
Radar17: Ku-D (<u>wide swath</u>) Camera ∆t	Cold Cloud Feedback Processes	Yes	Yes	Yes
ALI	Radiation Absorption By Aerosol Boost	Yes w/ Boost from UV lidar	Yes w/ Boost from UV lidar	Yes
	Low cloud & Snowfall Boost (Radar profiling to surface and camera Δt)	Yes	Yes	Yes
Lidar06: HSRL w/ UV Polar07:	Upper Troposphere/Lower Stratosphere Climate Feedback Processes (ALI, SHOW)	Yes w/ Boost from ALI, SHOW	Yes w/ Boost from ALI, SHOW	Yes
Radar13E+1: Ku-D, Ka-D, W-D Camera ∆t ALI	Relate properties of convection to high cloud feedback	Very Good w/ Boost from Wide Swath Radar	Very Good	Very Good

SSG-1: Radar18, Camera

3rd

ACCP-D1A

P2	ALI	
	Lidar05: HSRL	
1: Radar13E, o07, Lidar05, Polar07,	Polar07:	
03, Spec04	Radar13E: Ka-D, W-D	

Radar18: Ku-D, W

Camera ∆t &

SSG-2: Lidar09er, Radio07, Polar04b

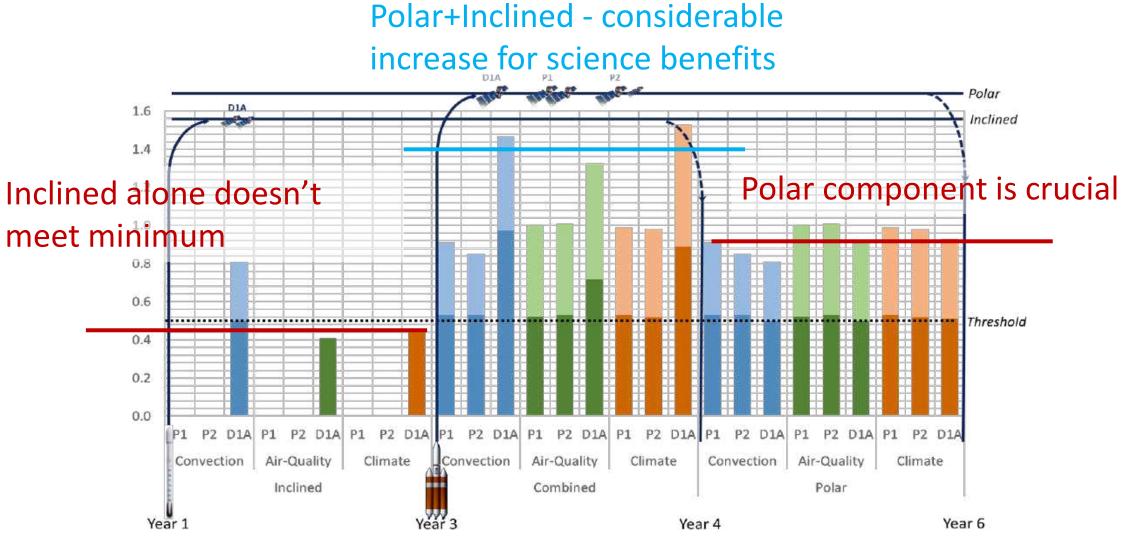
D1A

Inclined Orbit

Distinguishing features

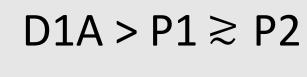
- P1 & P2 have <u>HSRL with UV channel</u>, provides boost to examinations of 1) radiation absorption by aerosols and 2) cloud-climate continuity (e.g. w/ Earthcare).
- P1 and P2 have <u>ALI, SHOW limb spectrometers</u>, provides boost to upper troposphere/lower stratosphere cloud feedback studies.
- P1 has a wide <u>swath</u> radar, provides better sampling for studying connections between convection and high cloud feedback.

to examinations of 1) radiation y (e.g. w/ Earthcare). des boost to upper ies. for studying connections

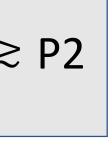


ACCP Science Considerations Across Architectures

Polar core is crucial to meet minimum ACCP Science.



ACCP Science Considerations Across Architectures


Overall Architecture Rank Closely Mimics Science Benefit Rank

Summary Comments

- The polar platform is 'core' and essential to meeting Minimum science.
- Despite a number of science benefits of P1 and P2, the greater ranking of D1A is strongly tied to its early launch and science return, and its inclined orbit, which enables diurnal sampling of ACCP quantities and processes – particularly convection, and it enables an added emphasis on tropical convection and tropical-extratropical connections important to weather and subseasonal to seasonal (S2S) forecasting.

Synerg	ies with	other	DO	Mi
--------	----------	-------	----	----

	SBG	MC	SDC
Basic Synergies with ACCP	 Enabled Joint Science Objectives e.g. Energy and Water Fluxes Joint Retrieval Algorithms e.g. especially SBG spectrometers and ACCP lidar and polarimeters Joint Validation Assets, Activities and Campaigns Combined observation constraints on atmosphere and ecosystem models 	Notably through ACCP precipitation measurements, including improved high latitude snowfall measurements over the POR.	Mostly anticipated in the intersection of applied science, with ACCP providing valuable information on precipitation/flood, wildfire and volcano plume/intensity information, etc all aiding Hazards theme for SDC.
P1	Basic Synergies	Swath for Radar provides improved precipitation time/space sampling.	Swath for Radar provides improved precipitation time/space sampling.
P2	Basic Synergies	Basic Synergies	Basic Synergies
D1A	Depending on SBG start, an early start for ACCP Inclined Orbit could provide more SBG overlap.	Depending on MC start, an early start for ACCP Inclined Orbit would provide more MC overlap.	Anticipated later start for SDC limits synergy; early prototyping of synergies can be explored with NISAR.

Greatest Synergies

issions

Applications Impact Team (AIT) ACCP HQ Review

Team Members

Dalia Kirschbaum (GSFC), Ali Omar (LaRC) Emily Berndt (MSFC)

Bryan Duncan (GSFC), Melanie Follette-Cook (GSFC), Amber Soja (LaRC), Svetla Hristova-Veleva (JPL), Aaron Naeger (MSFC), Anita LeRoy (MSFC), Patrick Gatlin (MSFC)

Innovations in Science for Societal Benefit

ACCP explores the fundamental questions of how interconnections between aerosols, clouds and precipitation impact our weather and climate, addressing real-world challenges to benefit society.

The ACCP Applications Impact Team (AIT) is charged with ensuring that applications are considered to the greatest extent possible in mission design. 22 billion-dollar weather and climate disasters in 2020

Climate change is exacerbating

hydrologic extremes and stressing water resources

38 million people in the Western US were exposed to unhealthy levels of air pollution from wildfires in 2020

Early Adopter & Applied **Science Programs**

Communities of Practice & **Potential**

Community Assessment Report (Pre-Phase A Requirement) to characterize communities of practice and potential who could benefit from ACCP in the future.

Association of Wildland Fire, CALIPSO Science Team

ACCP Stakeholder Workshops

- Weather and Air Quality Modeling (7/2019)
- Transportation and Logistics (11/2020)
- Air Quality (3/2021)

Science Conference Engagements

AGU, AMS, Community

Forums, HAQAST

Workshops, GPM Science

Team, International

- Over 110 workshop attendees and surveys solicited
- Over 60 independent interviews
- Engagement with National/International agencies and the private sector

Community & Stakeholder Feedback

Interviews with Communities of Practice and Potential

Surveys and Trainings

- Weather and AQ modeling community
- ARSET GPM training

ACCP Applications: High Impact Enabled Application Areas

Climate Modeling

Aviation

S2S Forecasting

Tropical Cyclone Forecasting

Numerical Weather Prediction

Air Quality Rules

and Regulations

Air Quality Modeling (forecasting)

CCP Modeling and Forecasting

Water Resources & Hydrometeorological Disasters

Air Quality Modeling & Atmospheric Disasters

Air Quality and Health

Air Pollution/Air Quality Monitoring

Human Health

Hydrologic Modeling: Water Resources, Agriculture, Drought Atmospheric Disasters: Fires, Volcanoes, Dust Storms

Hydrometeorological Disasters: Floods, Landslides

Community Characterization of Attributes

Attributes for prioritizing architectures

Instrument characteristics

- Channels/Bands/Products
- Swath width
- Spatial resolution

Architecture characteristics

- Geographic coverage, frequency of overpass, time of day
- Preferred orbit
- Delta-t

Measurement characteristics

- Latency
- Continuity
- Novelty

Assign Scores (1-5) for each Application

Included in scoring

- Instrument capabilities
- Architecture characteristics
- Continuity and novelty
- Potential L2/L3/L4 product
- Synergies/gaps with the program of record

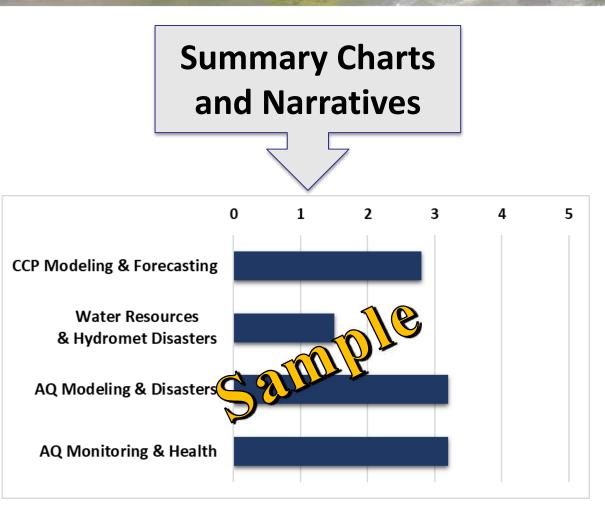
Not considered at this time

- Latency
- Data accessibility/formats
- Specific GV's linked to architectures with defined accuracy
- Cost
- Programmatic risk

Assigning Applications Benefit Scores

Average Scores by Thematic Areas

CCP Modeling and Forecasting



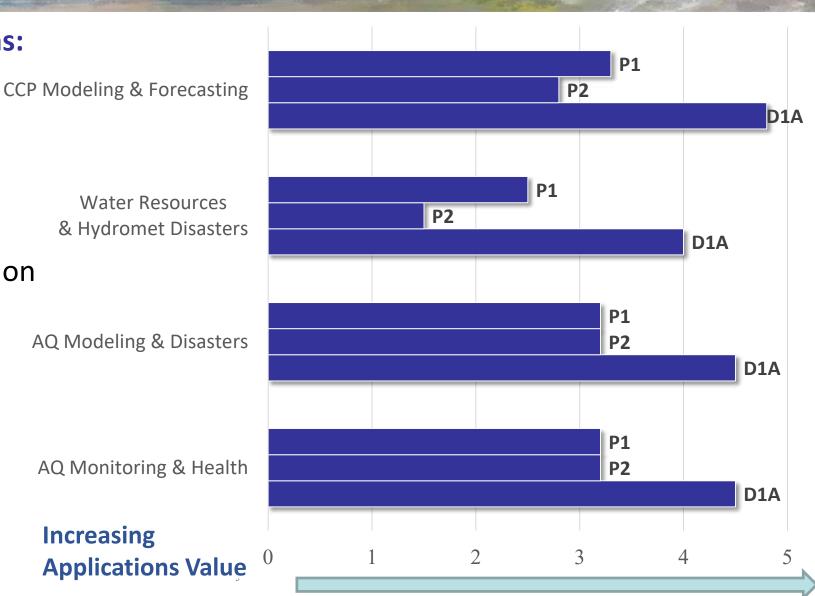
Water Resources & Hydrometeorological Disasters

Air Quality Modeling & Atmospheric Disasters

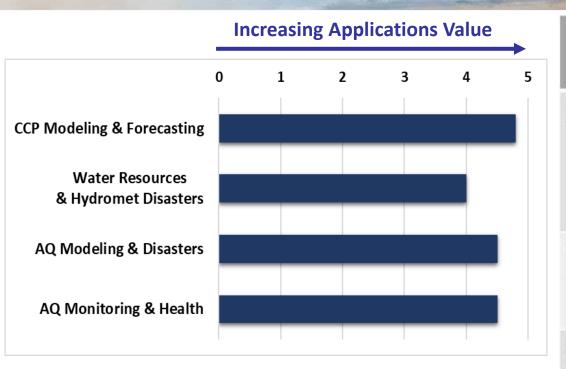
Air Quality and Health

CCP Architecture Comparisons

Factors that enhance applications:


- Diurnal sampling
 - Precipitation
 - Aerosols
- Advanced precipitation and convection observations
- Aerosol type and size information

Opportunities to further enable applications:


- Low Latency
- Low frequency radiometer ulletchannels
- UV Lidar Channel

AQ Monitoring & Health Increasing **Applications Value**

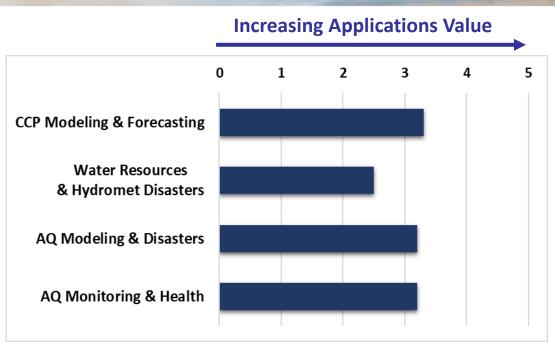
Water Resources

CCP Architecture D1A – Ranked 1st

Factors that Enhance Applications	Benefits	Opportunities to <u>Further</u> Enable Applications	Benefits
Combined Lidar/Polarimeter	Polar & inclined orbit supports AQ modeling & monitoring centers' need for increased sampling and diurnal aerosol observations	Adding a UV wavelength	Enables estimates of PM1 and PM2.5, and more accurate aerosol types (e.g., dust, smoke)
Radar/Radiometer observations	Allows for cross- calibration with the POR to derive L3/L4 products	Lower frequency radiometer channels	Improves characterization of precipitation extremes over land
Ku/W-band Doppler Radar	Captures diurnal precipi tation and convection to improve modeling	Wider swath radar	Better supports weather and climate modeling applications

Radiometer data assimilation advances NWP skill for high impact weather event

L3/L4 precipitation informs crop yield modeling and water resource allocation



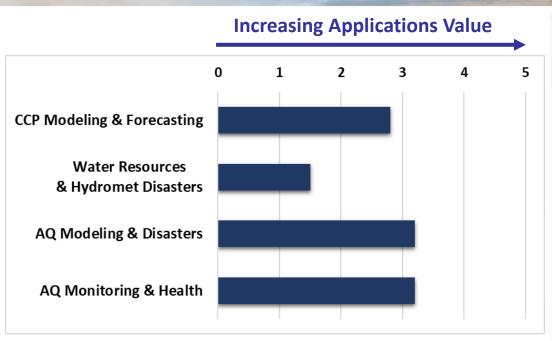
Diurnal observations of wildfire smoke improves air quality modeling

NA

Architecture P1 – Ranked 2nd

		and the second se	
Factors that Enhance Applications	Benefits	Opportunities to <u>Further</u> Enable Applications	Benefits
Lidar retrievals of particle micro- physical properties and types	Supports health studies & air quality models. Enables estimates of space-based PM1 & PM2.5 and more accurate aerosol subtypes	Inclined orbit for sampling & diurnal changes	Resolves daily evolution of convection, aerosol distributions and precipitation for high impact weather events
Wide swath radar	Supports L3/L4 products for hydrologic applications and CCP model improvement	Inclined radiometer	Cross-calibration with POR important for L3/L4 gridded products
Ku radar observations of deltaT	Leads to improvement in NWP, S2S and climate models	High resolution and lower freq- uency radiometer	Improves gridded precipitation products

Observations of volcanic plumes support aviation safety and navigation decisions


Discerning aerosol types informs air quality monitoring and health studies for identifying hazardous levels of PM

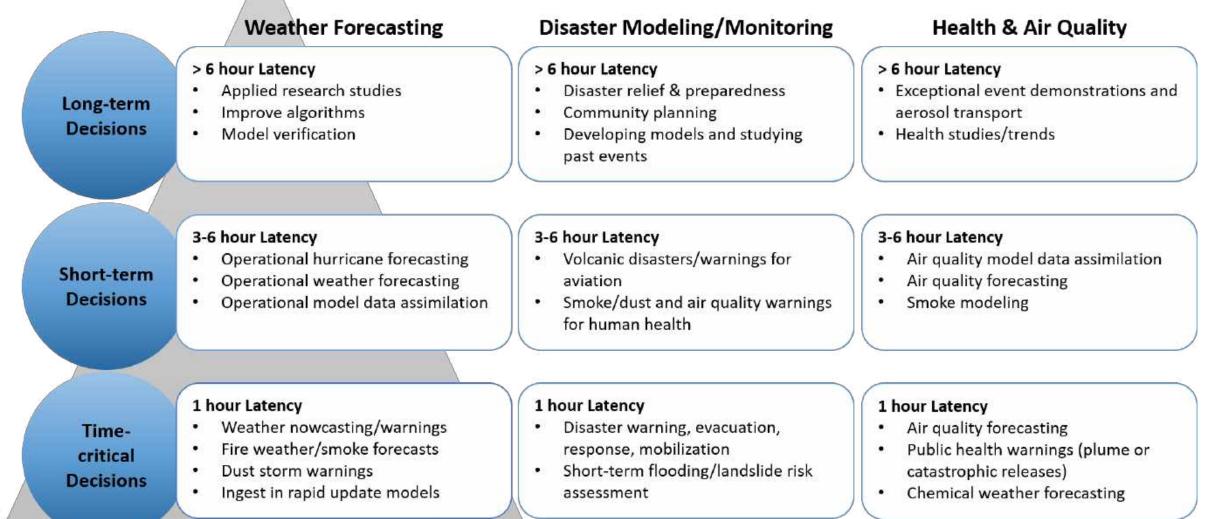
Vertical profiles of precipitation enable situational awareness of tropical cyclones

CCP Architecture P2 – Ranked 3rd

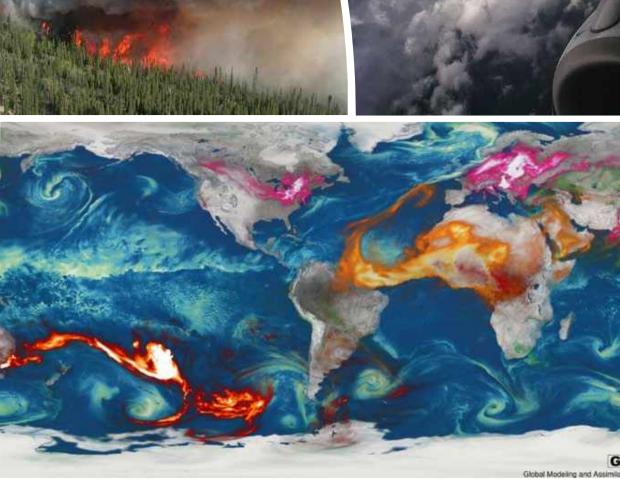
Factors that Enhance Applications	Benefits	Opportunities to <u>Further</u> Enable Applications	Benefits
Lidar retrievals of particle micro- physical properti es and types	Supports health studies & air quality models. Enables estimates of space-based PM1 & PM2.5 and more accurate aerosol subtypes	Inclined orbit for sampling & diurnal changes	Resolves daily evolution of convection, aerosol distributions and precipitation for high impact weather events
Stereo cameras	Helps identify smoke and volcanic plume heights, critical for accurate monitoring and forecasting	Inclined radiometer	Provides cross- calibration with POR important for L3/L4 gridded products
3-frequency Ku/Ka/W Doppler radar	Enhances CCP model development with vertical velocity and hydrometeor details	Wider swath radar	Improves weather and climate modeling by resolving precipitation extremes over land

Vertical information on precipitation and clouds support climate model development

and verification.


Resolving vertical extent of critical aerosol types will advance air quality smoke forecasts

Better knowledge of global vertical distributions of aerosols helps health professionals assess the global impact of air pollution.


Benefits of Latency

Innovations in Science for Societal Benefit

ACCP will enable decision making that impacts people around the world, from short-term crises to long-term plans. It will advance:

- Weather Forecasting by observing vertical air motions in storms along with atmospheric parameters to improve our understanding of severe storm events
- **Climate Modeling** by providing measurements that reveal the inner workings of aerosol, cloud and precipitation processes resulting in more reliable climate predictions
- Air Quality through more precise measurements of aerosols in the horizontal and vertical to better forecast impacts on human health
- **Disaster monitoring** by rapidly conveying observations and predictions of volcanic plumes, wildfire smoke, and extreme precipitation

Agenda

tion	Time	Time Allocation	Торіс	Presenter
	11:00	5	Introductory Remarks	
1	11:05	5	Study Overview	V. Moran
2	11:10	25	High Level ACCP Science & Applications	S. Van den Heever; S. Braun
3	11:35	10	ACCP Radiation Measurement	G. Stephens
4	11:45	5	Decision Process/Value Framework Overview	M. Ivanco
5	11:50	5	Science Scoring Process Overview	A. DaSilva
6	11:55	5	Candidate Architectures Identification & Groupings	J. Piepmeier
7	12:00	15	SIT-A: Quality Simulations, Scoring Methodology, & Lessons Learned	J. Redemann
8	12:15	15	SIT-CCP: Quality Simulations, Scoring Methodology, & Lessons Learned	J. Mace
9	12:30	15	How Science Benefit Scoring of Architecture Elements Informed	S. Braun
	12:45	10	Break	
			Top 3 Architectures	
10	12:55	20	a. Description of Science & Synergy with other DO/Tos	D. Waliser
11	1:15	15	b. Enabled Applications	D. Kirschbaum/A. Omar
12	1:30	20	c. Instrumentation and Technology Readiness Assessment	S. Bidwell
13	1:50	20	d. Programmatics	V. Moran
14	2:10	10	Sub-Orbital Vision & Status	W. Petersen
15	2:20	5	Comparison of 3 Architectures and Recommendation of One	C. Trepte
	2:25	5	Remarks from Center Partner Management Board	Irons/Friedl/Dyal
16	2:30	5	Community Assessment	S. Van den Heever
			Next Steps —	
17	2:35	20	Plan for Pre-Phase A	V. Moran
	2:55	5	Closing Remarks	D. Vane
	3:00	4.0		

Extra Slides

Innovations in Science for Societal Benefit: Severe Storms

January 8th, 2021, www.climate.gov

2020 had 22 separate billion-dollar weather and climate disasters across the United States, shattering the previous annual record of 16 events and causing **\$95 billion** in damages.

W-4 (MI): Convective Storm Formation Processes.

2017 Decadal Survey Questions

Why do convective storms, heavy precipitation, and clouds occur exactly when and where they do?

ACCP will accelerate public benefits of science:

By providing the first ever global view of convection and precipitation motion in severe storms, enabling operational weather communities to better understand the timing, intensity and severity of storms that lead to improved forecasting skill over high-risk areas.

D1A Advantages

Diurnal sampling of convection and extreme precipitation for NWP and tropical cyclone monitoring and modeling

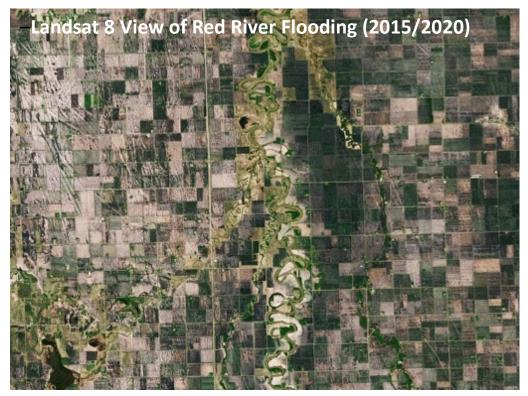
Innovations in Science for Societal Benefit: Air Quality

San Francisco Skyline on Sept 9th, 2020

Wildfires have accounted for up to 25% of *PM*_{2.5} in recent years across the United States and up to 50% in the Western U.S. (Burke et al. 2021, PNAS). **200,000 Americans die every year from air pollution related illnesses** and in 2020, an estimated 38 million people in the Western U.S. were exposed to unhealthy levels of wildfire smoke for at least five days.

2017 Decadal Survey Questions

W-5 (MI): Air Pollution Processes and Distribution. What processes determine the spatio-temporal structure of important air pollutants and their concomitant adverse impact on human health, agriculture, and ecosystems?


ACCP will accelerate public benefits of science

Through enhanced observations of aerosol types and sizes, ACCP will provide unprecedented data to more accurately model population exposure to both total and speciated PM around the globe, which can provide insight into how to most effectively reduce the human health risk of particulate air pollution.

D1A Advantages

Frequent sampling of aerosols emissions from inclined and polar orbits will improve air quality monitoring and resolution of aerosol transport in high-risk areas.

Innovations in Science for Societal Benefit: Climate Modeling

Hydrologic extremes of drought and flooding stress water resources and damage communities in the Red River basin in the south-central U.S. with an expected increase in the frequency of extreme events (droughts and floods) by the end of the century (Bertrand et al. 2018, JAMC)

2017 Decadal Survey Questions

C-2 (I-MI): Climate Feedback and Sensitivity. How can we reduce the uncertainty in the amount of future warming of Earth, improve our ability to predict local and regional climate response to natural and anthropogenic forcings, and reduce the uncertainty in global climate sensitivity?

ACCP will accelerate public benefits of science

Novel estimates of vertical motion, aerosols, and microphysical properties of precipitation and clouds will support seasonal to seasonal (S2S) and climate modeling, leading to improvements in model parameterization and verification to better assess hydrometeorological extremes within vulnerable communities.

D1A Advantages

Diurnal sampling of precipitation, clouds and convection will advance climate modeling through model verification and parameterizations.

CCP Informing Architectures: Polar

Priorities for Polar


CCP

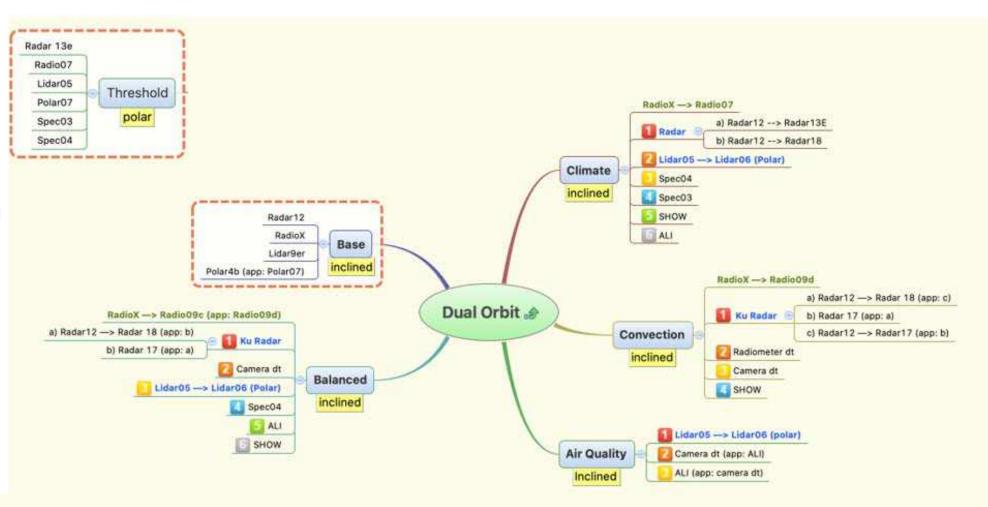
- Wide Swath Ku radar severe storms
- Capable radiometer TC forecasting, NWP, S2S, Hydro/Disasters community
- Nadir-pointing Ku-Radar Model parameterization and verification in modeling

Aerosols

NASA

- Lidar06 Microphysical retrievals for AQ monitoring
- High resolution Polarimeter (Pol07)
 Spatially extend AQ assessment
- Camera dt High-altitude plumes
- Spec04 AOD, SSA, absorption for AQ modeling
- ALI Detecting high-altitude smoke and volcanic plumes

-**Applications priorities indicated by "app"


Informing Architectures: Inclined

Priorities for Inclined CCP

- Radiometer (89 GHz, High res): TC forecasting, NWP, S2S, Hydro/Disasters community (L3/L4)
- Ku Radar (Radar 18) Climate modeling, NWP, S2S communities
- Radar and radiometer dt Model verification in climate, S2S, NWP

Aerosols

- ALI High-altitude plumes and aiding calibration for extinction and typing
- Camera dt Plume top heights
- **Spec04** Cloud information/clearing, multiwavelength AOD, SSA, absorption

**Applications priorities indicated by "app"

Sub-Orbital Working Group Vision and Status Walt Petersen¹, Jay Mace², Felix Seidel³, Jens Redemann⁴

¹NASA Marshall Space Flight Center; ²University of Utah; ³NASA Jet Propulsion Laboratory/Cal Tech.; ⁴University of Oklahoma

And the SOWG Committee

Jennifer Comstock, Andrew Dessler, Silke Gross, Andrew Heymsfield, Jose Jimenez, Pedro Campuzano Jost, Ralph Kahn, Pierre Kirstetter Mark Kulie, Zen Mariani, James Mather, Allison McComiskey, Greg McFarquhar, Richard Moore, Joe Munchak, Steve Nesbitt, Sebastian Schmidt, Martin Wirth, Mengistu Wolde, Rob Wood

132

Framework

Goal: Provide **Sub-Orbital observations (surface-airborne)** as an integral element of the ACCP observing system

Why Sub-Orbital: Aspects of ACCP science will be challenging, if not impossible to fully achieve from orbit alone (e.g., in situ, spatial/time access and resolution, process evolution, accuracy); Cal/Val of products; Select targeting of science- early, and in synergy with phasing of orbital components.

Objectives: Maximize ACCP's total science return (science / cost)

- Sub-Orbital framework in-sync with ACCP orbital architecture and SATM
 - Set of sub-orbital science foci
 - In situ data needed for satellite retrievals
 - **Calibration / Validation** needs and approach(es)
 - Opportunities/partnerships to bridge gaps wrt POR and/or launch schedule

Identifying Science Foci

5.51M Objective 0 ing SATM objective, and/o

Key Sepphysical Variables

Potential Strategie

Schorbital ACCF ion Rit: Cold Clouds and Precipita

fote mie Romain

Suborbita) ACCE

Suborbital ACCP

ets adviceing SATM objective, and/or SATM science that is better best drant

Sub-erbital arisings that supp

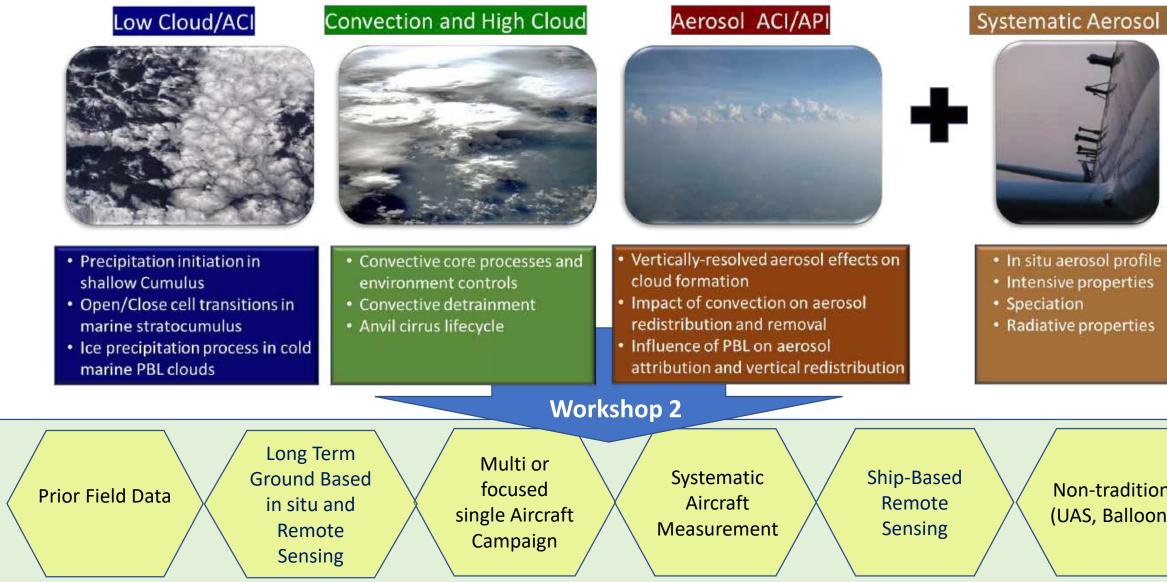
uting cub-entitus accets

Community Workshop March 2020

- Science targets including:
- a. High level strategies
- b. Data useful to algorithms
- c. Cal/val synergies

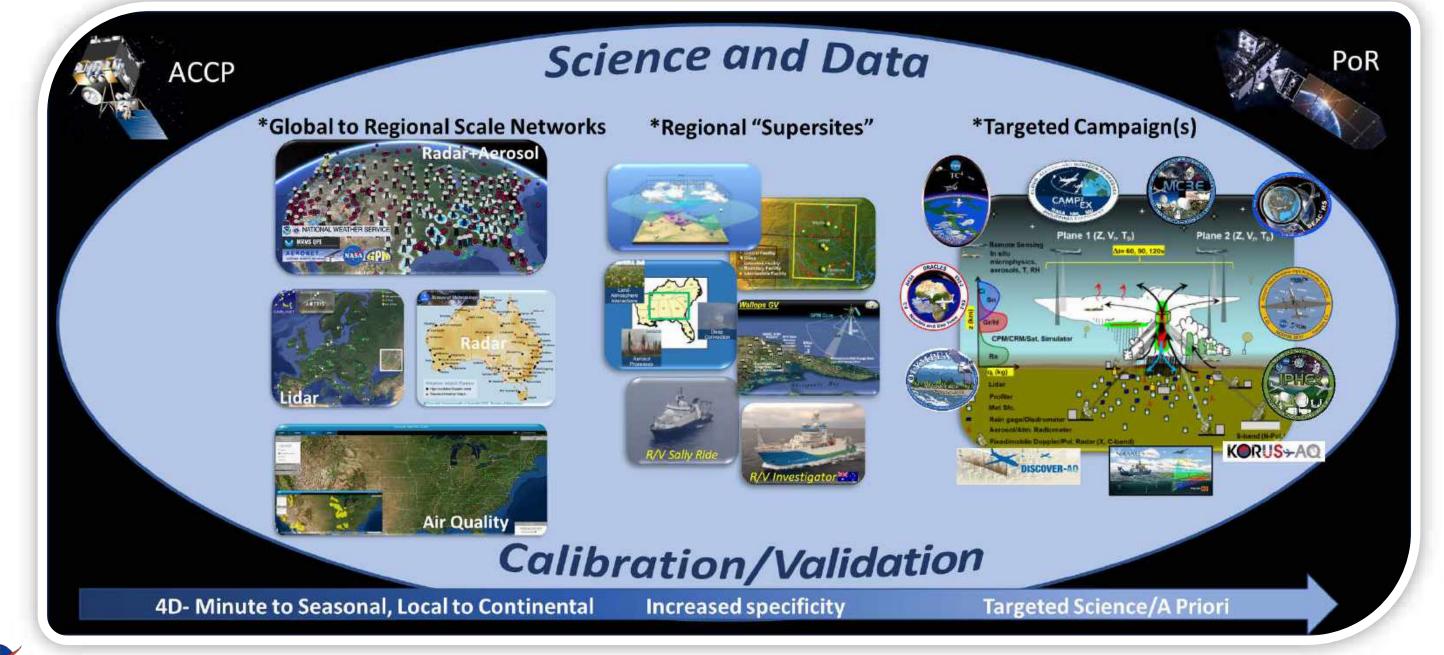
Community enthusiasm produces copious science input for all SATM objectives

Suborbital ACCP SATIM Concerns # # Convection


ACCP Aerosol, Clouds, Convection, and Precipitation Study

Small set of prioritized science modules

Science Themes and Modules


- Three science themes with <u>highly</u> synergistic process modules and a Systematic aerosol sampling module
- Space-time resolved and in situ measurements, airborne and/or surface-based platform accessible

Non-traditional (UAS, Balloon...)

Draft Implementation "Vision"

- Sub Orbital is integral to ACCP science traceable to SATM focusing on augmenting and supplementing
- Diversity of ACCP science: a spectrum of implementation strategies from groundbased to multi-aircraft.
 - Emphasis is on strong intra agency, inter agency, and international partnerships
- Science and Implementation strategies modularized so that ACCP SubOrbital can
 - 1. Respond quickly
 - Develop long-term planning for implementation in Phase A 2.

Aerosol, Clouds, Convection, and Precipitation Study

Moving Forward

#	ACCP Suborbital Tasks	Who
1	Complete ACCP Sub-Orbital framework based on Workshop 1	SOWG
2	Define ACCP Sub-Orbital science foci to achieve most optimal ACCP observing system	SOWG Chairs
3	Refine ACCP Sub-Orbital science foci with SOWG	SOWG
4	Consult with ACCP Leadership/Stakeholder groups (SMT/SALT/SCC/Modeling WG etc.)	SOWG
5	Draft ACCP Sub-Orbital/Cal-Val implementation & preparation for workshop #2	SOWG
6	Hold workshop #2 to further develop/refine implementation with community	SOWG & Community
7	Coalesce workshop inputs, refine, and map implementation approaches to science modules and cal/val; Draft implementation plan	SOWG
8	Debrief and iterate with Leadership/Stakeholders; Apply adjustments	SOWG Chairs
9	Complete Sub-orbital implementation framework/plan	SOWG Chairs
A(10	Initiate implementation phases/components and logistics	Team

End Date

July 2020 Nov. 2020

Jan. 2021

On going

March 2021

Mar 29-Apr 16, 2021

August 2021

Sept/Oct 2021

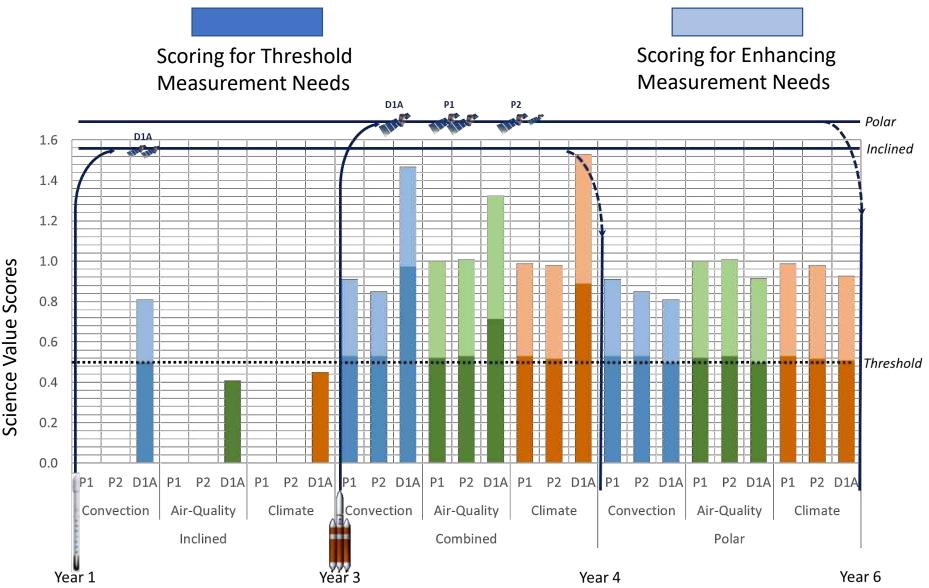
November 2021

NET Phase A

ACCP Aerosols, Clouds, Convection, and Precipitation Study

Comparison of 3 ACCP Architectures and Recommendation of Study Team's Preferred Architecture

Science Value Benefit Comparison


P1, P2, and D1A will make substantive advancements towards ACCP science goals

P1 & P2 offer the most capable instrument suites

D1A offers most balanced approached

- Early Science Opportunity (CY 27/28)
- Adds diurnal sampling
- Superior value with combined platforms; however, inclined segment by itself fails to satisfy threshold science

D1A ranks highest for Science Value

Applications Value Benefit Comparison

All architectures provide measurements that greatly enhance the PoR

P1 provides more benefit than P2 for weather/hydrology focus areas

P1 and P2 provide the same value for Health and Air Quality needs

D1A ranks highest because the diurnal sampling adds considerable value to A and CCP applications: (D1A > P1 > P2)

CCP Modeling & Forecasting Water Resources **P2** & Hydromet Disasters AQ Modeling & Disasters AQ Monitoring & Health Increasing Benefit

D1A realizes highest scoring with diurnal sampling

P2	P1		D1A
		D1A	
		DIA	
	P1		
	P2		D1A
			DIA
	P1		
	P2		D1A
			DIA
I	\rightarrow	•	

Programmatic Factors Comparison

D1A Ranks Highest with each Programmatic Factor

	P1	P2	D1A
Continuity of Observations	2nd	2nd	1st
Innovative Mission Implementation	2nd	2nd	1st
Transformative Science	2nd	3rd	1st
Flight Project Schedule Risk (1=Least Risk)	3rd	2nd	1st
Number of International Partners	3	2	1
Cross-benefit with Other Disciplines	Hydrology Oceans	Hydrology Oceans	Hydrology Oceans
Possible Launch Timeframe	2031	2031	1 st 2027/28 2 nd 2028/29

ACCP Preferred Recommendation

Based on the rankings of science, applications and programmatic factors, **D1A is identified as the preferred architecture for ACCP**

Consensus opinion with SALT, SIT and AIT

- > 90% of U.S. responders favor D1A
- Opinion drops slightly to 80% when international participants are included
- The Study Management Team agrees with this recommendation
 - Conversations with CNES, CSA, and JAXA will continue to explore contributions that might be feasible within cost cap

Community Assessment of the Architectures

Greg Carmichael and Sue van den Heever SCC Co-Chairs

SCC Assessment of the Proposed Architectures

Science Community Committee

Independent committee

- Comprised of university faculty and non-NASA lab scientists
- Mid-career experts in aerosols, convection, clouds and precipitation
- Represent the broader science community and end users of the data
- First and foremost interested in the science that can be achieved using ACCP data

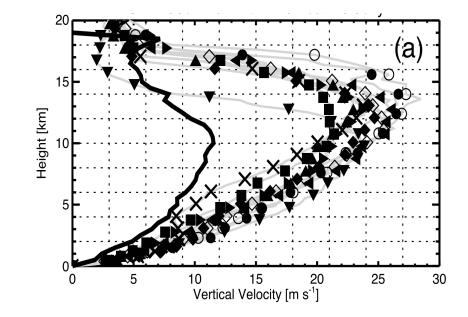
SCC Co-Chairs						
Greg Carmichael	Univ. of Iowa	Sue van den Heever	Colorado State Univ.			
US SCC Members	US SCC Members					
Ana Barros	Duke Univ.	Andy Dessler	Texas A&M			
Graham Feingold	NOAA CSL	Mike Fromm	NRL			
Andrew Gettelman	NCAR	Colette Heald	MIT			
Steve Klein	LLNL	Mark Kulie	NOAA/NESDIS/STAR			
Tristan L'Ecuyer	Univ. Wisconsin	Ruby Leung	PNNL			
Yang Liu	Emory Univ.	Johnny Luo	CCNY			
Allison McComiskey	BNL	James Nelson	NOAA/NWS/NCEP			
Steve Nesbitt	Univ. Illinois	Jeff Reid	NRL			
Lynn Russell	Scripps	Courtney Schumacher	Texas A&M			
Armin Sorooshian	Univ. Arizona	Rob Wood	Univ. Washington			

SCC Contributions to the ACCP **Study Framework**

Assist and Assess

- Involved from the start
- Actively evaluated and provided feedback on:
 - Science objectives and overarching statements
 - Proposed instruments and architectures
 - Proposed methodology and approaches
 - Narrative
- Actively involved
 - Modeling workshop(s)
 - Suborbital working group

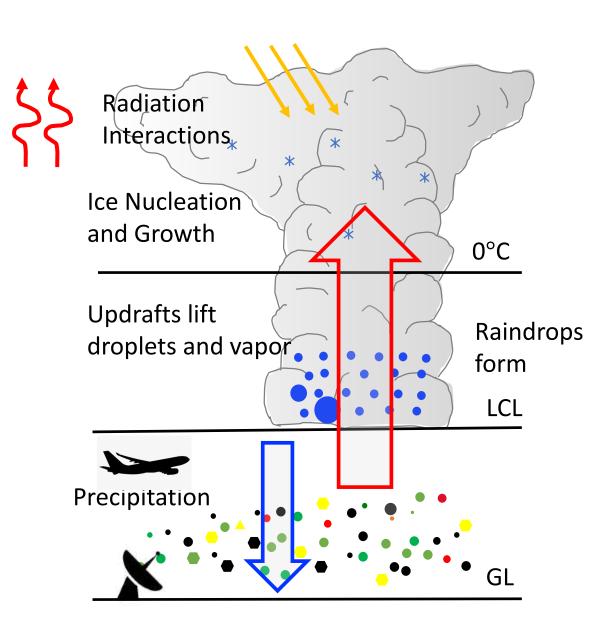
- 1. Global Observations of Vertical Motion
- 2. Global Profiles of Aerosol Properties
- 3. Co-Located Dynamics, Microphysics and Aerosol Characteristics
- 4. Evolution of Cloud and Aerosol Processes
- 5. Diurnal Cycle of Clouds and Aerosols



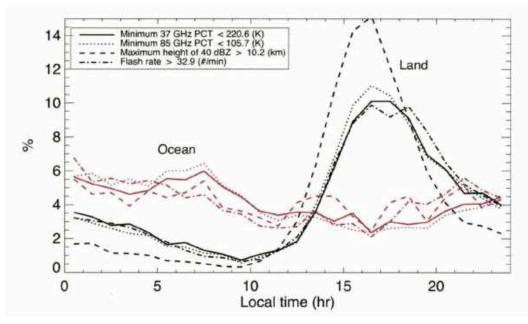
1. Global Observations of Vertical Motion

• ACCP: first global measurements of the vertical motions through multifrequency Doppler radars

2. Global Profiles of Aerosol Properties

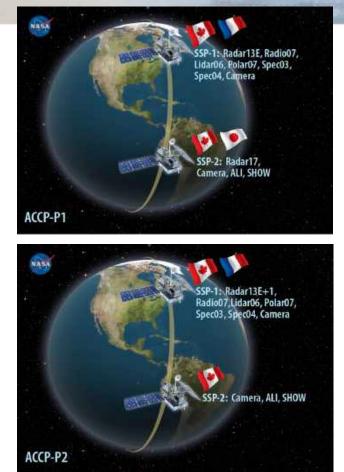

- ACCP: vertical profiles of aerosol properties throughout the depth of the troposphere through hyper spectral resolution lidar
- Simultaneous measurements of aerosol and precipitation processes by locating lidar and radars on the same platform.

- 3. Co-Located Dynamics, Microphysics and Aerosol Characteristics
 - ACCP: first co-located simultaneous measurements of aerosol, cloud, vertical motion, precipitation and radiation processes through the use of radars, lidars, radiometers, polarimeters and spectrometers on the SAME PLATFORM.
 - The Suborbital component is critical in obtaining complementary BL and below cloud observations.



- 4. Evolution of Cloud and Aerosol Processes
 - The delta-t cameras are truly novel → important advances in our understanding of the vertical motions of shallow BL clouds, as well as plume heights.

5. Diurnal Cycle

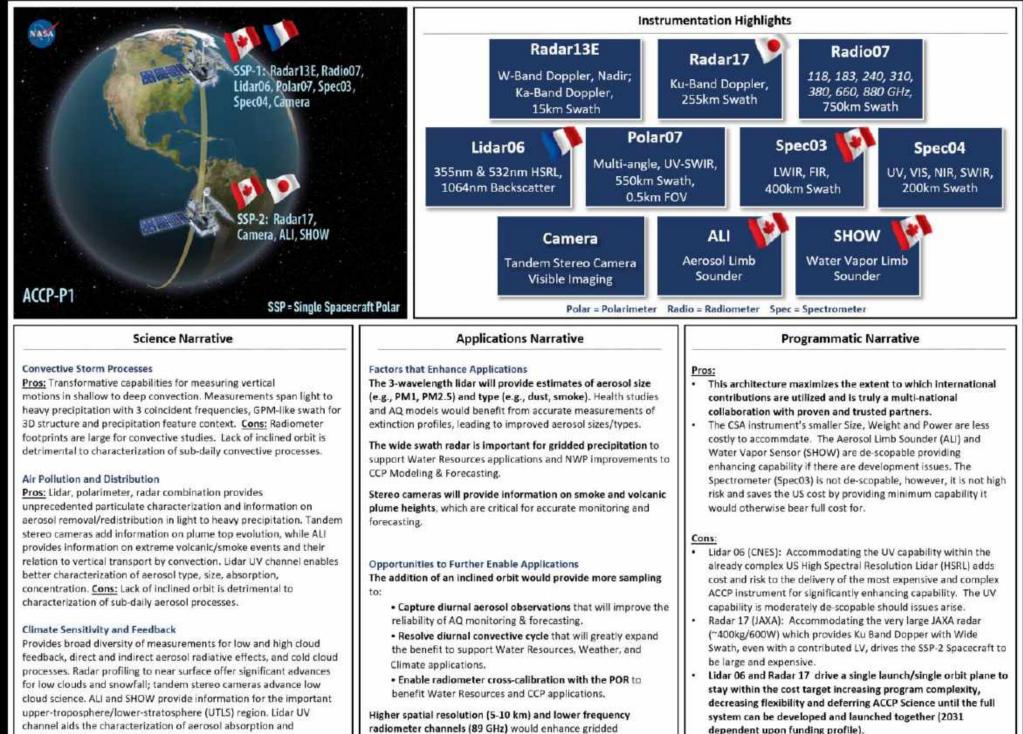

• A-CCP: simultaneous co-located sampling of vertical motions, clouds, aerosols and radiation through the use of the Doppler radars, lidars, radiometers and polarimeters on the INCLINED orbit.

SCC Assessment of the Architectures

 2 (~10%) of the SCC identified P1 as their top priority

• 2 (~10%) of the SCC identified P2 as their top priority

- Independent SCC poll
- The findings of the SCC are in strong support the SALT, SIT and SMT recommendations
- The majority of the SCC believe that D1A will be successful in delivering the 5 FIRST-EVERS


A-CCP's novel, transformative measurements will significantly enhance our understanding of the earth's weather and climate system and will also allow us to better predict aerosol, cloud, convection and precipitation processes on weather through S2S through climate scales.

• 15 (~80%) of the SCC identified D1A as their top priority

Aerosol, Clouds, Convection, and Precipitation Study

precipitation to support Water Resources applications and

precipitation characterization for CCP applications.

discrimination of anthropogenic aerosols.

 There is some likelihood that de-scope option(s) may need to be executed in Pre-Phase A / Phase A to stay within cost target.

Architecture P1

Risk

\$1.7

Lifelihood Conseque

> 5 20

3 3

> 2 8

> 2 8

2

4 5 20

4 3 5

2

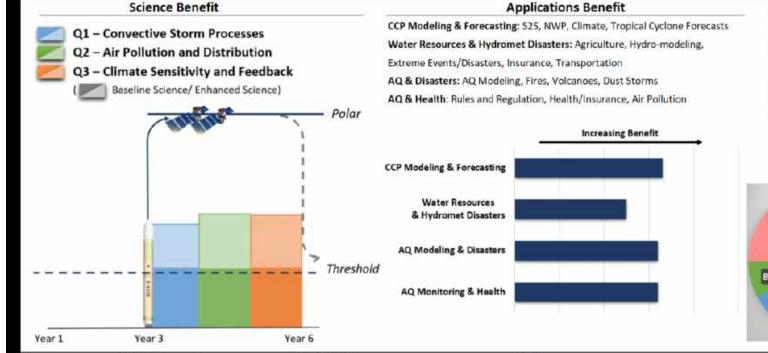
4

4

4 2 8

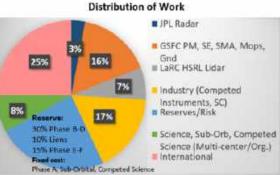
4

4 2 8


4c

15 5

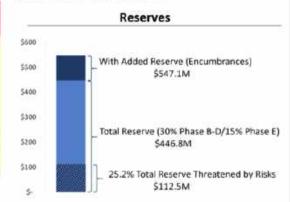
10


9

8

Programmatic Factors	Rank
Continuity of Observations	2nd
Innovative Mission Implementation	2nd
Transformative Science	2nd
Flexibility with Funding Profiles	3rd
Flight Project Schedule Risk	3rd
Number of International Partners: 3	

Cross-benefit with Other Disciplines: Oceans


Descope Options (Cumulative)

1. Descope ALI/SHOW (\$1,556M) Loss of information for the important upper-troposphere/lower-stratosphere (UTLS) region and extreme volcanic/smoke events and their relation to vertical transport by convection.

(\$M)

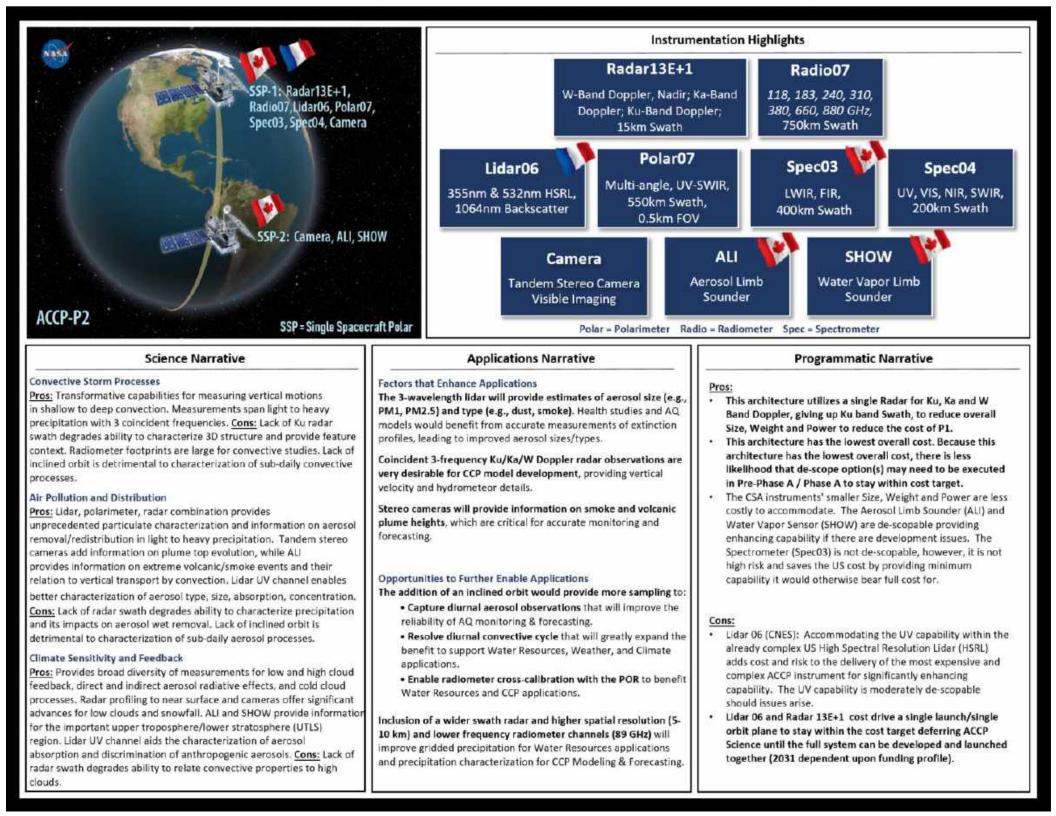
2. Descope Camera ∆t (\$1,529M) Loss of information on clouds and plume top evolution.

3. Lidar05 in lieu of Lidar06 (\$1,456M) Loss of lidar UV channel degrades the characterization of aerosol properties, including absorption.

WBS Element	CO	st (SIVI)	-			RISK
Phase A	\$	39.1	Liens/End	cum	brances FY1	8 (\$100.3M)
Phase B-D			Lidar06		\$37.9	Radio07
1.0 Project Management	\$	77.6	Radar17		\$26.1	Polar04b/
2.0 Systems Engineering	\$	44.5	Spec03		\$13.8	Spec04
3.0 Safety & Mission Assurance	\$	51.7	Radar13E		\$7.3	ALI
4.0 Science & Technology	\$	103.5				
5.0 Payloads	\$	749.1	Top 10 R	isks	/Threats	
6.0 Spacecraft	\$	285.4	Risk #	Туре		Risk
7.0/9.0 Mission Operations/Ground Systems	\$	82.5	Lidar06	р	Risk of Gro	wth (Mass, Po
8.0 Launch Vehicle / Services	\$	23	Radar13E	Ρ	Risk of Ren	naining Techno
10.0 Systems Integration & Testing	\$	51.7	Lidar06	т	UV Transm	itter On-Orbit
Phase E-F	\$	81.0	Arch-1	т	Risk of Sing	le Launch
Sub-Orbital	\$	29.3	Radar13E	р	Risk of Pre-	Launch Techn
Competed Science	\$	48.9	Lidar06	Ρ	Risk of Pre-	Launch Techn
30% Reserve Phase B-D/15% Phase E	s	446.8	Spec04	Р	Risk of Scie	nce Algorithm
Encumbered Risk	\$	100.3	Camera	р	Risk of Gro	wth (Mass, Po
Total (minus contributions)	\$	1,598	Camera	р	Risk of Scie	nce Algorithm
a a sure from a sure of a		_,	ALI/SHOW	p	Risk of Scie	nce Algorithm

WRS Flement

Note: All costs in FY18 dollars, reported at ~50% coalidence level


Cost (SM)

	- T		areary are			a the wards in the said		
			Lidar06		\$37.9	Radio07	\$3.7	SHOW
	\$	77.6	Radar17		\$26.1	Polar04b/07	\$3.2	
	\$	44.5	Spec03		\$13.8	Spec04	\$4.7	
ance	\$	51.7	Radar13	E	\$7.3	ALI	\$1.8	
	\$	103.5						
	\$	749.1	Top 10 F	lisks	Threats			
	\$	285.4	Risk #	Туре		Risk Tit	le	
s/Ground Systems	\$	82.5	Lidar06	ρ	Risk of Gro	wth (Mass, Power	, Footprint)	ę.
es.	\$	23	Radar13E	Р	Risk of Ren	aining Technolog	y Dev.	
& Testing	\$	51.7	Lidar06	т	UV Transm	itter On-Orbit Deg	gradation	
	\$	81.0	Arch-1	т	Risk of Sing	le Launch		
	\$	29.3	Radar13E	Р	Risk of Pre-	Launch Technical	lssue(s)	
	\$	48.9	Lidar06	Ρ	Risk of Pre-	Launch Technical	Issue(s)	
se E	S	446.8	Spec04	Ρ	Risk of Scie	nce Algorithm De	v.	
	¢	100 3	Camera	Р	Risk of Gro	wth (Mass, Power	, Footprint)	

P-Programmatic w/Cost Consequence (2-2-5%; 3-5-7%; 4-7-10%; 5->10%); T-Technical

Science Algorithm Dev.

Science Algorithm Dev.

Architecture P2

Extreme Events/Disasters, Insurance, Transportation

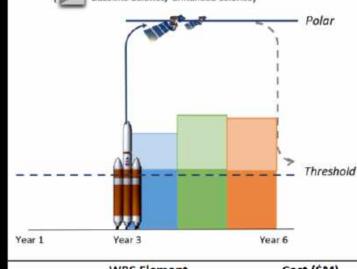
AQ & Disasters: AQ Modeling, Fires, Volcanoes, Dust Storms

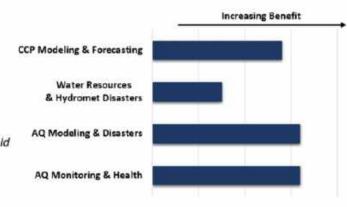
AQ & Health: Rules and Regulation, Health/Insurance, Air Pollution

Applications Benefit

CCP Modeling & Forecasting: S2S, NWP, Climate, Tropical Cyclone Forecasts

Water Resources & Hydromet Disasters: Agriculture, Hydro-modeling,


Science Benefit



Q1 - Convective Storm Processes Q2 – Air Pollution and Distribution

Q3 – Climate Sensitivity and Feedback

Baseline Science/ Enhanced Science)

Utelitood

4 5

4 5

3

2

4

4 2

4

5

5

2 4

2

2 4

2

Programmatic Factors

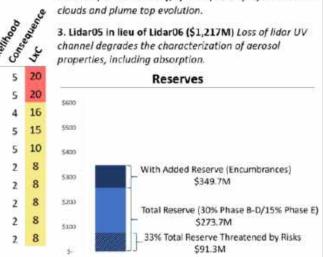
Rank

(\$M)

Continuity of Observations	3rd
Innovative Mission Implementation	2nd
Transformative Science	3rd
Flexibility with Funding Profiles	2nd
Flight Project Schedule Risk	2nd
Number of International Partners: 2	

Cross-benefit with Other Disciplines: Oceans

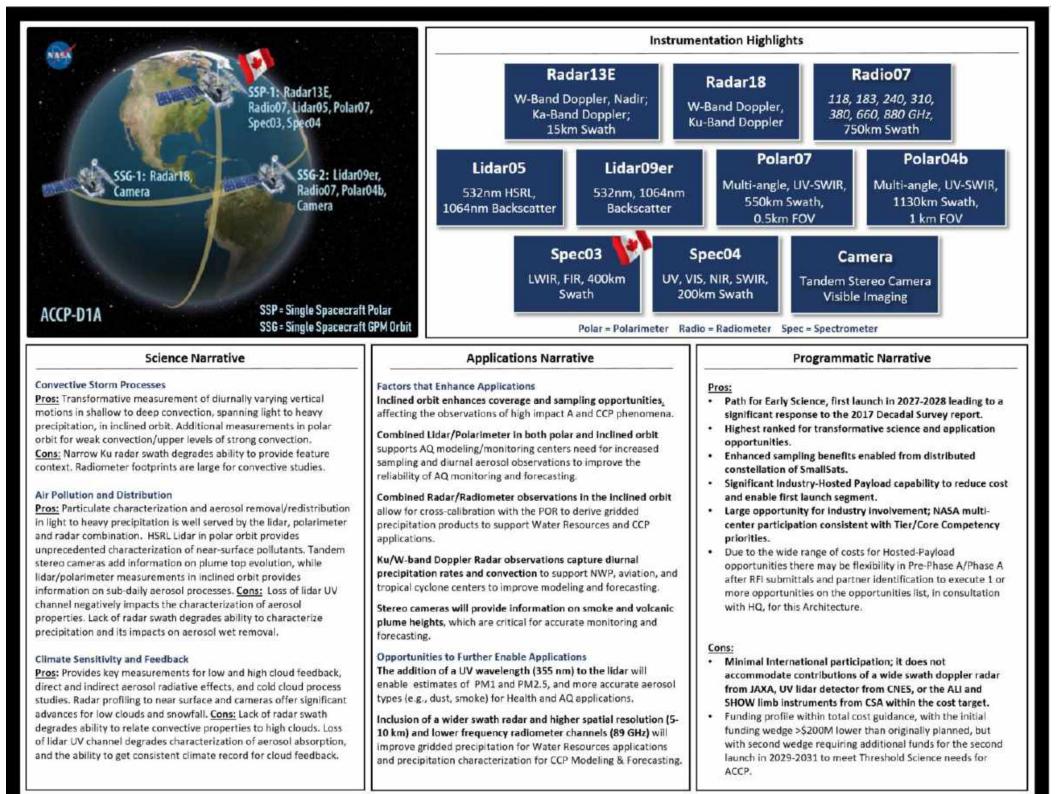
Distribution of Work



Descope Options (Cumulative)

1. Descope ALI/SHOW (\$1,334M) Loss of information for the important upper-troposphere/lower-stratosphere (UTLS) region and extreme volcanic/smoke events and their relation to vertical transport by convection.

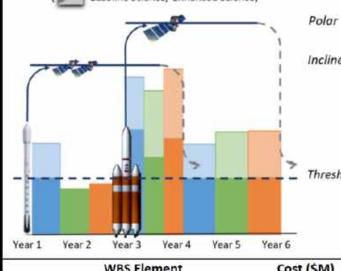
2. Descope Camera At (\$1,262M) Loss of information on clouds and plume top evolution.


3. Lidar05 in lieu of Lidar06 (\$1,217M) Loss of lidar UV channel degrades the characterization of aerosol properties, including absorption.

WBS Element		ost (\$M)				Risk		
Phase A	\$	39.1	Liens/Encumbra		rances FY18 (\$76.3M)			
Phase B-D			Lidar06		\$37.9	Polar04b/07	\$3.2	
1.0 Project Management	\$	44.9	Spec03		\$13.8	Spec04	\$4.7	
2.0 Systems Engineering	\$	25.7	Radar13E	+1	\$9.5	ALI	\$1.8	
3.0 Safety & Mission Assurance	\$	29.9	Radio07		\$3.7	SHOW	\$1.7	
4.0 Science & Technology	\$	59.8						
5.0 Payloads	\$	386.4	Top 10 R	isks/	Threats			
6.0 Spacecraft	\$	211.8	Risk #	Тур		Risk	Title	
7.0/9.0 Mission Operations/Ground Systems	\$	82.5	Lidar06	P	Risk of Growth (Mass, Power, Footr			
8.0 Launch Vehicle / Services	\$	107.5	Radar13E+1	Ρ		maining Technol	Constation and Constanting	
10.0 Systems Integration & Testing	\$	29.9	Radar13E+1	Р		e-Launch Technic	States and the second	
Phase E-F	\$	81.0	Lidar06	Т		mitter On-Orbit D		
Sub-Orbital	\$	29.3	Arch-1	т		ngle Launch		
Competed Science	\$	48.9	Lidar06	P	Risk of Pr	e-Launch Technic	al Issue(s)	
30% Reserve Phase B-D/15% Phase E	\$	273.4	Spec04	Ρ	Risk of Science Algorithm Dev.			
Encumbered Risk	\$	76.3	Camera	Ρ	Risk of Gr	owth (Mass, Pow	er, Footprint)	
Total (minus contributions)	\$	1,432.0	Camera	Ρ	Risk of Sc	ience Algorithm [)ev.	
			ALI/SHOW	Ρ	Risk of Sc	ience Algorithm ()ev.	

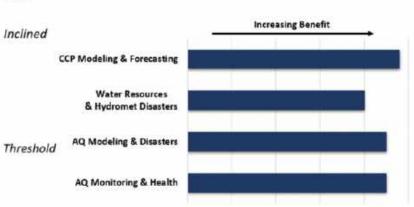
P=Programmatic w/Cost Consequence (2=2-5%; 3=5-7%; 4=7-10%; 5=>10%); T=Technical

Note: All costs in FY18 dollars, reported at ~50% confidence level



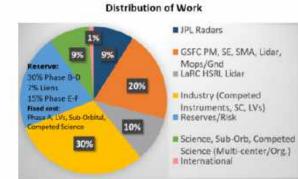
Architecture D1A

Science Benefit


Q1 – Convective Storm Processes Q2 – Air Pollution and Distribution Q3 – Climate Sensitivity and Feedback

Baseline Science/ Enhanced Science)

Applications Benefit


CCP Modeling & Forecasting: S2S, NWP, Climate, Tropical Cyclone Forecasts Water Resources & Hydromet Disasters: Agriculture, Hydro-modeling, Extreme Events/Disasters, Insurance, Transportation AQ & Disasters: AQ Modeling, Fires, Volcanoes, Dust Storms AQ & Health: Rules and Regulation, Health/Insurance, Air Pollution

Risk

Programmatic Factors Rank Continuity of Observations 1st Innovative Mission Implementation 1st Transformative Science 1st **Flexibility with Funding Profiles** 1st Flight Project Schedule Risk 1st Number of International Partners: 1

Cross-benefit with Other Disciplines: Hydroglogy, Oceans

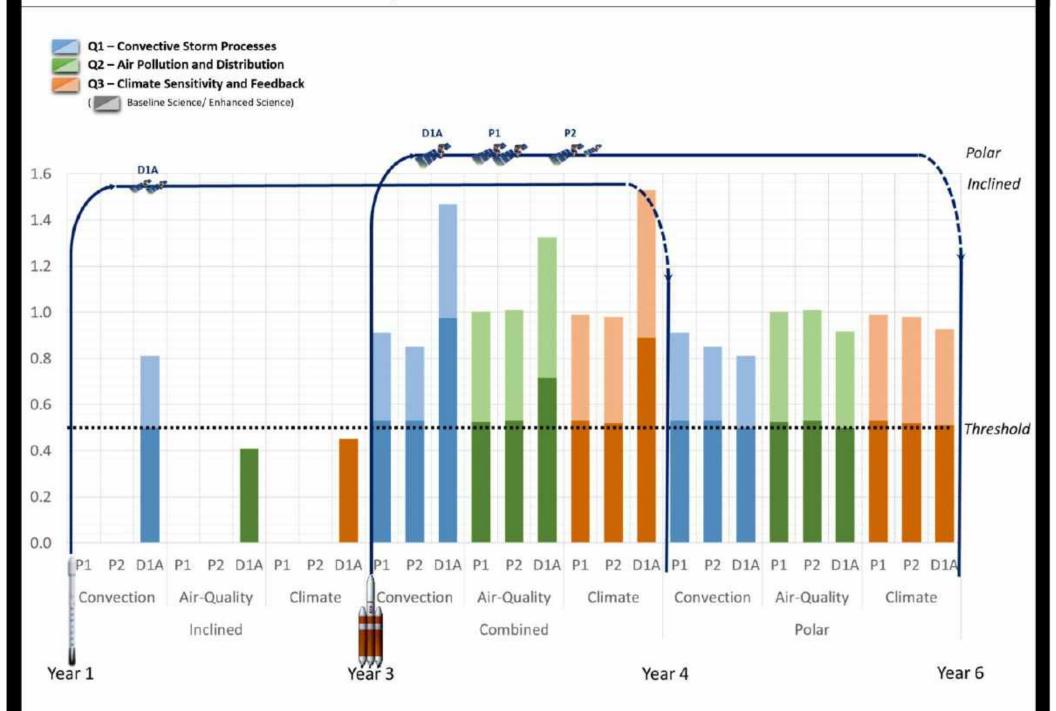
Descope Options (Cumulative)

1. Descope Camera At (\$1,530M) Loss of information on clouds and plume top evolution.

(\$M)

2. Radar12 in lieu of Radar18 (\$1,497M) Loss

of information about vertical motions and precipitation rates in heavy rainfall events.

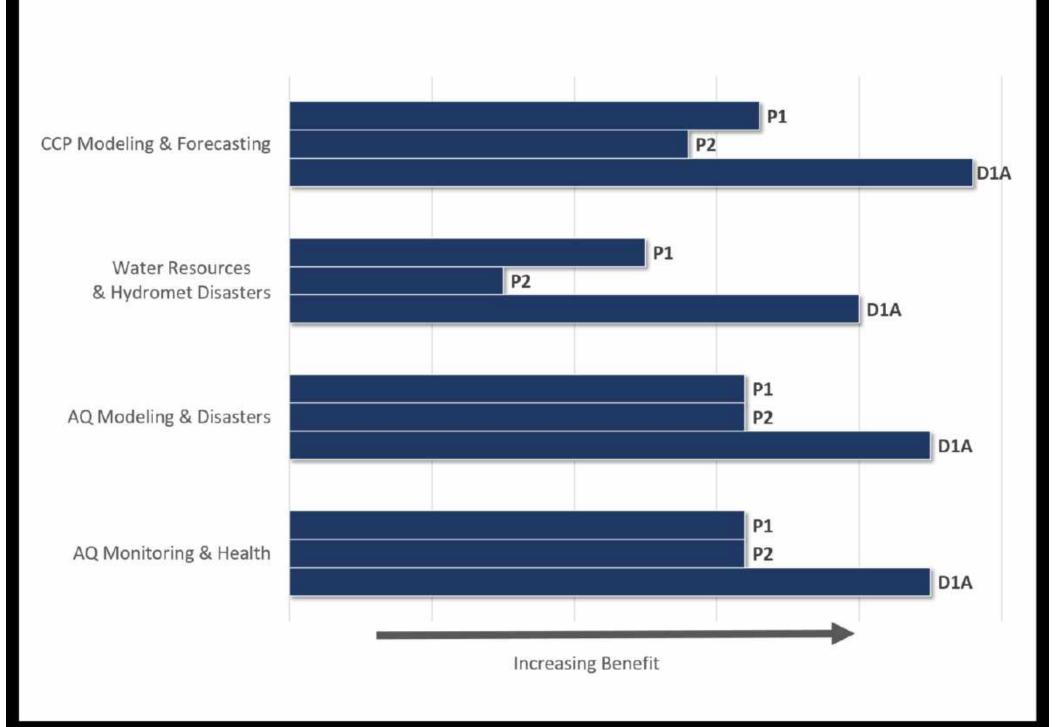

	(itelih	Conse	LAC "Quence		
	4		20	Reserves	
	4	5	20	600	-
	2	5	10		
	3	3	9	\$sno	
	3	3	9	\$400	
	3	3	9	With Added Reserve (Encumbrances)	
<i>1</i> 2	4	2	8	\$300 \$342.5M	
	4	2	8	\$200	4
	4	2	8	Total Reserve (30% Phase B-D/15% Phase \$282.6M	E)
	4	2	8	29.6% Total Reserve Threatened by Risks	
echnical				s \$83.8M	

WBS Element	 DSt (ŞIVI)				RISK	
Phase A	\$ 39.1	Liens/En	cumb	rances FY1	L8 (\$59.8M)	
Phase B-D		Spec03		\$13.8	Radio07	\$3.7
1.0 Project Management	\$ 47.5	Lidar05		\$12.9	Polar04b/07	\$6.5
2.0 Systems Engineering	\$ 27.2	Radar 18		\$10.9	Spec04	\$4.7
3.0 Safety & Mission Assurance	\$ 31.7	Radar13	Ē	\$7.3		
4.0 Science & Technology	\$ 63.3					
5.0 Payloads	\$ 423.5	Top 10 R	isks/	Threats		
6.0 Spacecraft	\$ 209.6	Risk #	Тур	e	Risk Title	
7.0/9.0 Mission Operations/Ground Systems	\$ 75.0	Lidar05	P	Contraction Constants	rowth (Mass, Power, Foot	print)
8.0 Launch Vehicle / Services	\$ 166.2	Radar13E	P		emaining Technology Dev	Sector State
10.0 Systems Integration & Testing	\$ 31.7	Lidar09r	P		rowth (Mass, Power, Foot	
Phase E-F	\$ 65.4	Radar18	р		e-Launch Technical Issue	
Sub-Orbital	\$ 29.3	Radar13E	P	Risk of Pr	e-Launch Technical Issue	(s)
Competed Science	\$ 48.9	Lidar09r	P	Risk of M	anufacturability Issues	
30% Reserve Phase B-D/15% Phase E	\$ 282.6	Lidar05	P	Risk of Re	emaining Technology/Eng	ineering Dev.
Encumbered Risk	\$ 59.8	Lidar05	P	Risk of Pr	e-Launch Technical Issue	(5)
Total (minus contributions)	\$ 1,586.0	Spec04	P	Risk of Sc	ience Algorithm Dev.	
		Camera	P	Risk of G	rowth (Mass, Power, Foot	print)
No. 10 - Complete Company - Cl. 1. 1		D-Orogramma	in aid?	et Conroquia	non /2-2 EW: 2-E 78: 4-7.108	E-st/Web T-Tor

Note: All costs in FY18 dollars, reported at ~50% confidence level

P=Programmatic w/Cost Consequence (2=2-5%; 3=5-7%; 4=7-10%; 5=>10%); T=Ter

Comparison of Science Benefit


Comparison of Science Benefit

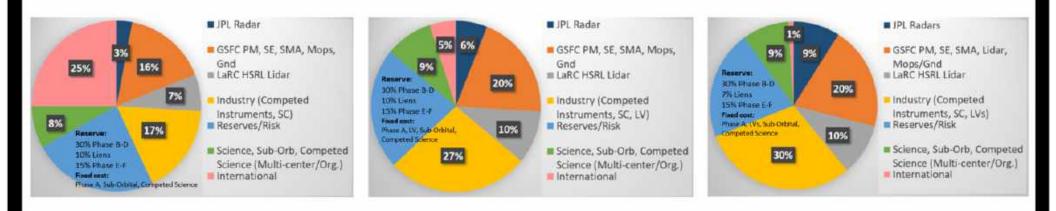
Active and passive measurements in all 3 architectures provide measurements of air motions within clouds, with vertical profiling of aerosol, cloud and precipitation properties that make substantive advancements toward ACCP science goals.

While the single orbit architectures **P1** and **P2** deliver the most capable instrumentation in a single package, these architectures do not sample the sub-daily variability of key processes. Compared to **P1**, the lack of radar swath in architecture **P2** degrades its ability to characterize 3D structure and do precipitation feature context with adverse impacts on the characterization of aerosol wet removal.

Architecture **D1A** provides a balanced solution in which diurnal measurements are now included with an additional inclined orbit, at the expense of some reduction in the polar orbit measurement capabilities. Most notably, the loss of lidar UV channel in **D1A** negatively impacts the characterization of aerosol properties. Much like **P2**, lack of radar swath in **D1A** degrades ability to characterize precipitation and its impacts on aerosol wet removal. However, during the inclined segment (years 1-2), architecture **D1A** provides early information on sub-daily processes. During the overlap segment (year 3), the additional sampling from the dual orbits allows D1A to sample diurnal processes, while providing cross-calibration of the diurnal lidar and improved characterization of aerosol, cloud and precipitation properties from polar orbit. While architecture **D1A** meets threshold science for convection, the polar segment is required for it to meet threshold for aerosol and climate feedback science.

Comparison of Applications Benefit

Comparison of Applications Benefit


D1A provides the most opportunity for enhancing and extending applications for both A and CCP. The diurnal observations made possible by the inclined orbit are fundamental for precipitation and convection applications, and also provides increased sampling and critical information on the diurnal distribution of aerosols. Integrated, diurnal ACCP observations from **D1A** will advance models and forecasting to support decision making at timescales from hours to decades, enabling improved weather and air quality forecasting today, seasonal to sub-seasonal changes in the near future, and societal challenges resulting from climate change in the decades to come.

For aerosol applications, communities request increased sampling and greater accuracy in aerosol typing available from D1A, raising the bar beyond the POR and increasing synergy with ground-based networks. The two lidars on D1A (backscatter on the inclined and two-channel high-spectral resolution lidar, HSRL, in polar orbit) will provide vertical information on aerosol distributions, important for AQ forecasting and Disasters (e.g., fires, volcanoes, dust). The two-channel HSRL lidar will provide accurate aerosol types, while the lidar/polarimeter combination in the inclined will improve aerosol typing from the backscatter lidar. The three-channel HSRL (P1 and P2) will vield better characterization of aerosol size (e.g., PM1, PM2.5), an important parameter for the health and AQ communities, but lack the increased sampling and diurnal observations from D1A.

For Hydrologic and CCP applications, communities request increased sampling to capture the diurnal cycle of convection and high impact phenomena available only in D1A. Only the D1A inclined orbit radiometer observations provide an opportunity for cross-calibration with the PoR to extend precipitation measurements. D1A provides coincident Ka/W Doppler observations in polar orbit, with coincident Ku/W Doppler observations in an inclined orbit, presenting a valuable set that allows capturing the spectrum of CCP variables to benefit applications. Novel estimates of vertical velocity, provided by all three architectures, enable first ever global view of convective motion and precipitation in severe storms, enabling modeling and forecasting communities to better improve forecast skill of high impact events. Coincident Ku/Ka/W Doppler radar (P2) and wideswath Ku-band (P1) are desirable for weather and climate model development, however the benefit of the D1A inclined orbit is more desirable. An important desire for all architectures is addressing the outstanding need for higher resolution (<5-10km) and lower frequency radiometer channels (e.g. 89GHz) to improve precipitation characterization.

Comparison of Programmatic Factors

	P1	P2	D1A
Continuity of Observations	2nd	3rd	1st
Innovative Mission Implementation	2nd	2nd	1st
New Science	2nd	3rd	1st
Flexibility with Funding Profiles	3rd	2nd	1 st
Flight Project Schedule Risk	Зrd	2nd	1st
Number of International Partners	3	2	1
Cross-benefit with Other Disciplines	Oceans	Oceans	Hydrology, Oceans

P1 All-In International Only 1 Launch 2031 Highest Risk — Indicated by Liens P2 US Alternative To JAXA Radar Only 1 Launch 2031 Lower Risk—Indicated by Liens D1A Early Science Option 1st Launch As Early as 2027-2028 Lowest Risk—Indicated by Liens

Comparison of Cost

WBS Element		P1 Cost (\$M)	P2 C	ost (\$M)	D1A	Cost (\$M)
Phase A	\$	39.1	\$	39.1	\$	39.1
Phase B-D						
1.0 Project Management	\$	77.6	\$	44.9	\$	47.5
2.0 Systems Engineering	\$	44.5	\$	25.7	\$	27.2
3.0 Safety & Mission Assurance	\$	51.7	\$	29.9	\$	31.7
4.0 Science & Technology	\$	103.5	\$	59.8	\$	63.3
5.0 Payloads	\$	749.1	\$	386.4	\$	423. <mark>5</mark>
6.0 Spacecraft	\$	285.4	\$	211.8	\$	209.6
7.0/9.0 Mission Ops/Ground Systems	\$	82.5	\$	82.5	\$	75.0
8.0 Launch Vehicle / Services	\$	-	\$	107.5	\$	166.2
10.0 Systems Integration & Testing	\$	51.7	\$	29.9	\$	31.7
Phase E-F	\$	81.0	\$	81.0	\$	65.4
Sub-Orbital	\$	29.3	\$	29.3	\$	29.3
Competed Science	\$	48.9	\$	48.9	\$	48.9
30% Reserve Phase B-D/15% Phase E	\$	446.8	\$	273.4	\$	282.6
Encumbered Risk	\$	100.3	\$	76.3	\$	59.8
Total (minus contributions)	\$	1,598	\$	1,432	\$	1,586

Note: All costs in FY18 dollars, reported at ~50% confidence level

Comparison of Risk

4 5 20

4 5 20

3 5

2 5

3 3

4 2 8

4 2

4 2

4 2

4 2

15

10

9

8

8

8

8

20

16

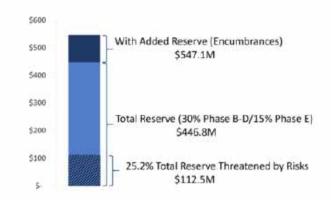
15

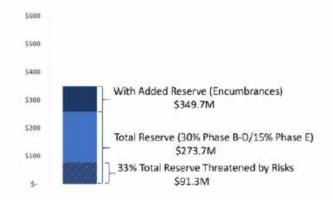
10

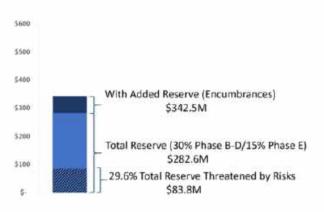
8

8

8


8


8


Risk Title Risk # Type P Risk of Growth (Mass, Power, Footprint) Lidar06 p Risk of Remaining Technology Dev. Radar13E Lidar06 UV Transmitter On-Orbit Degradation т Arch-1 Risk of Single Launch т Risk of Pre-Launch Technical Issue(s) Radar13E P Lidar06 Risk of Pre-Launch Technical Issue(s) P Spec04 Risk of Science Algorithm Dev. D Risk of Growth (Mass, Power, Footprint) Camera D p Risk of Science Algorithm Dev. Camera p Risk of Science Algorithm Dev. ALI/SHOW

Risk #	Type	Risk Title			
Lidar06	Ρ	Risk of Growth (Mass, Power, Footprint)	4	5	
Radar13E+1	Ρ	Risk of Remaining Technology Dev.	4	5	
Radar13E+1	р	Risk of Pre-Launch Technical Issue(s)	4	4	
Lidar06	т	UV Transmitter On-Orbit Degradation	3	5	101
Arch-1	т	Risk of Single Launch	2	5	
Lidar06	Ρ	Risk of Pre-Launch Technical Issue(s)	4	2	
Spec04	Ρ	Risk of Science Algorithm Dev.	4	2	
Camera	Ρ	Risk of Growth (Mass, Power, Footprint)	4	2	
Camera	Ρ	Risk of Science Algorithm Dev.	4	2	
ALI/SHOW	Ρ	Risk of Science Algorithm Dev.	4	2	

Risk #	Туре	Risk Title			
Lidar05	Р	Risk of Growth (Mass, Power, Footprint)	4	5	20
Radar13E	Р	Risk of Remaining Technology Dev.	4	5	20
Lidar09r	Р	Risk of Growth (Mass, Power, Footprint)	2	5	10
Radar18	Р	Risk of Pre-Launch Technical Issue(s)	3	3	9
Radar13E	Р	Risk of Pre-Launch Technical Issue(s)	3	3	9
Lidar09r	Р	Risk of Manufacturability Issues	3	3	9
Lidar05	Р	Risk of Remaining Technology/Engineering Dev.	4	2	8
Lidar05	Р	Risk of Pre-Launch Technical Issue(s)	4	2	8
Spec04	Р	Risk of Science Algorithm Dev.	4	2	8
Camera	Р	Risk of Growth (Mass, Power, Footprint)	4	2	8

P2

P1

D1A