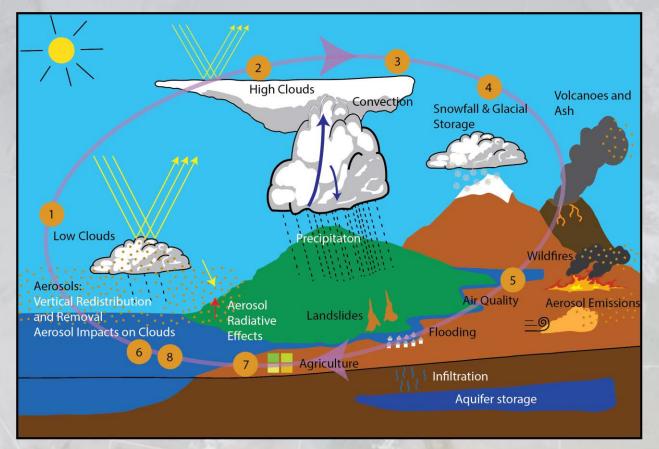
TMOSPHERE OBSERVING SYSTEM

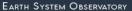
Atmosphere Observing System (AOS): Science Status

Scott Braun, NASA GSFC, AOS Project Scientist (PS) John Yorks, NASA GSFC, Deputy PS for Inclined Tyler Thorsen, NASA LaRC, Deputy PS for Polar Daniel Cecil, NASA MSFC, Deputy for Suborbital

> AOS Community Forum May 17, 2023


> > AOS Reviewed – Not Subject to Export Control

Major Science Priorities for AOS



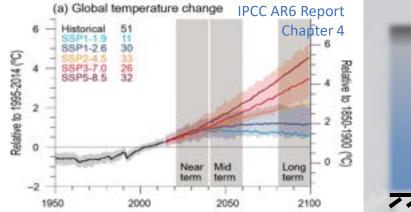
AOS provides an observing system that focuses on measurements addressing major Decadal Survey (DS) science themes tied to coupled aerosol-cloudprecipitation processes

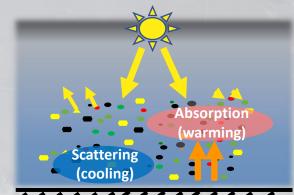
AOS addresses priority science called out by *multiple* ESAS DS panels and related to *three* targeted observables • TO-1: Aerosol & Cloud Radiative Properties • TO-2: Aerosol Vertical Profiles • TO-5: Clouds, Convection, & Precipitation

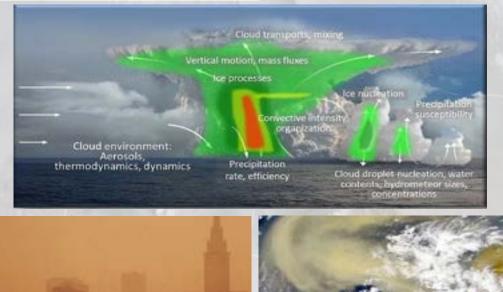
- AOS Science Objectives
- 1. Low cloud feedbacks
- 2. High cloud feedbacks
- 3. Convective storm processes
- 4. Cold clouds & precipitation
- 5. Aerosol attribution and air quality
- 6. Aerosol redistribution and removal
- 7. Aerosol direct effect
- 8. Aerosol indirect effect

AOS Objectives Focus on Three Themes

Climate sensitivity and feedbacks

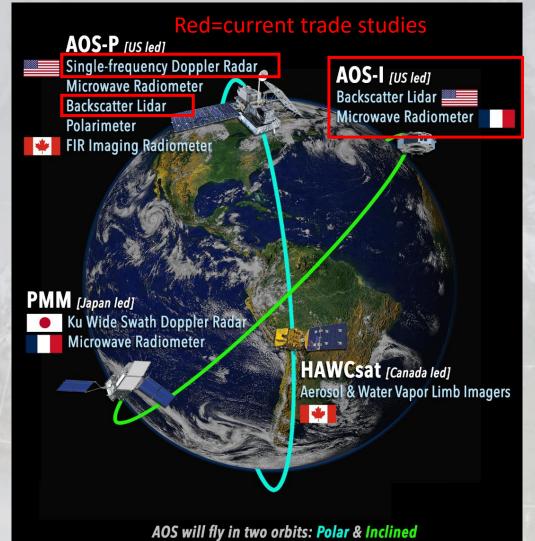

- Low and high cloud feedbacks
- Aerosol direct & indirect effects
- Cold clouds and precipitation


Convective Storm Formation Processes


- Coupled storm dynamics and microphysics
- Importance of diurnal cycle
- High cloud properties

Aerosol processes and distributions

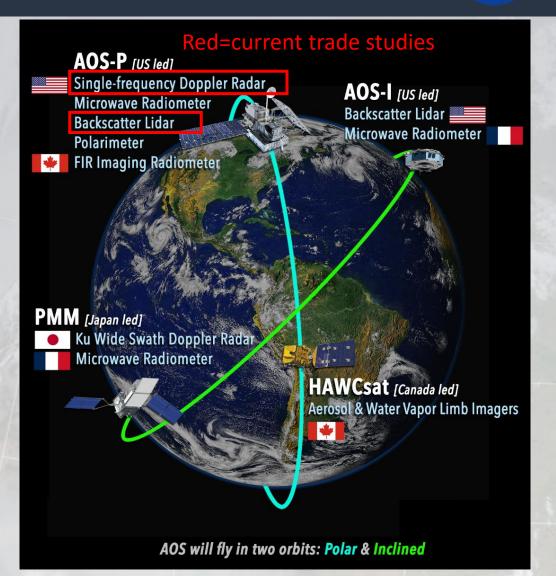
- Air quality and aerosol attribution
- Aerosol vertical redistribution and processing (from emission to removal)



Changes Since MCR: IRB/KDP-A Recommendations

AOS Polar Project

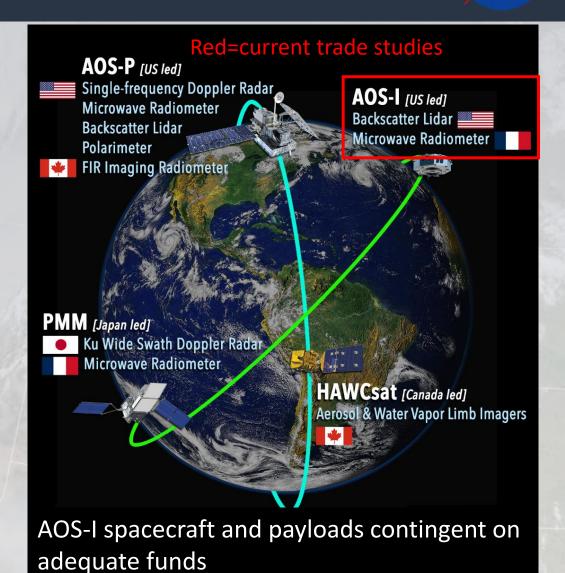
- IRB identified technical and cost risks associated with the active sensors in polar
- KDP-A guidance:
 - Change HSRL to backscatter lidar
 - Change dual-frequency radar to single frequency
 - Negotiated with HQ that radar requirement must include cloud profiling capability
 - Fit within more constrained budget



Changes Since MCR: Polar Trades

Trades for polar lidar

- Target for industry: CALIOP-like capability with daytime SNR equivalent to CALIOP nighttime SNR
- Potential partnership with Italian Space Agency (ASI) for 3-wavelength lidar flying in formation with AOS-P
- Trades for radar
 - Single-frequency cloud-profiling radar with sensitivity equivalent to MCR measurement requirements
 - Frequency agnostic; can be accomplished with either W or Ka band
 - Ka provides less attenuation
 - W required for cloud liquid water path
 - Dual-frequency should still be in trade space since descope does not impact technical/cost risk


Changes Since MCR: Inclined Orbit Trades

Earth System Observatory

Atmosphere Observing System

AOS Inclined Project

- Focused on convection, high clouds, aerosol profiles and variations over the day
- Potential changes: AOS-I spacecraft & payloads may not fit within revised budget, considering options through augmented budgets
 - Option #1: Add ALICAT on propulsive ESPA spacecraft
 - Option #2: Add ALICAT and CNES radiometers
 - Option #3: Add CNES radiometers only

EARTH SYSTEM OBSERVATORY

Atmosphere Observing System

Science Impacts of Options

Budget Augmentation Option	Summary	Science Priority	Science Addressed
Option #1	Adding lidar on small spacecraft to inclined orbit	Higher priority	 Adds profiling of clouds/aerosols, Diurnal sampling of aerosols to understand air quality changes and fire/smoke impacts, and ability to connect multiple lidar missions into long-term time series Has high applications value
Option #2	Adding small spacecraft for second CNES radiometer to inclined orbit	Lower priority	 Second CNES radiometer adds short-term changes in ice water path and ice mass flux through time-differenced observations Note: Single radiometer on JAXA PMM spacecraft is high priority
Option #3	Adding lidar and smallsats for both lidar and CNES radiometer	Highest priority	Combines benefits from Options 1 and 2

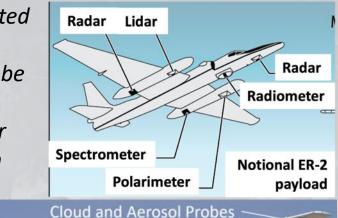
AOS Suborbital Element

Low Clouds: Microphysics, precipitation initiation

Convection/High Clouds: *Microphysics* and dynamics, anvil cirrus lifecycle.

Aerosol-Cloud-Radiation Interactions:

Vertically resolved aerosol-cloud-radiation interaction processes and lifecycle.


Large airborne campaigns

- Mid-latitude continental, 2029 or 2030
- Oceanic, 2032-2033

Campaigns after launch to enable cal-val

Payloads depicted are notional... instruments to be prioritized / deconflicted for each campaign

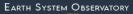
Radar

Spectromete Polarimeter Lida Notional Mid-High Aircraft (DC-8) Payload **Cloud + Aerosol probes**

- AOS is a complex mission targeting aerosol-cloudprecipitation interactions
- ACS faces a number of challenges (IRB recommendations, budget)
- ACS has an engaged team exploring ways to maximize science benefit within constraints (trades, partnerships)
- AOS can benefit from strong support from this community

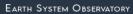
AOS Website: https://aos.gsfc.nasa.gov Email: scott.a.braun@nasa.gov

Earth System Observatory


EARTH SYSTEM OBSERVATORY

11

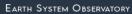
Extra Slides



ATMOSPHERE OBSERVING SYSTEM

Science Impacts of IRB/KDP-A Recommendations

	Change	Summary	Science Impacts
	HSRL to backscatter lidar	Clio instrument (HSRL at 532, backscatter at 1064 nm) changed to CALIOP-like backscatter lidar (backscatter at 532 and 1064 nm)	Large increase in systematic errors in profile, especially near surface and when high clouds present, with large impact on air quality; reduced detection of tenuous aerosol; significantly reduced capability to identify aerosol type and intrinsic properties like aerosol size
1	Dual frequency to single frequency radar	JPL W-, Ka-band radar changed to frequency agnostic cloud-profiling radar	Inability to determine particle size, reduced Doppler quality/range; if W band, significant impact of attenuation in moderate precipitation; if Ka band, loss of cloud liquid water path



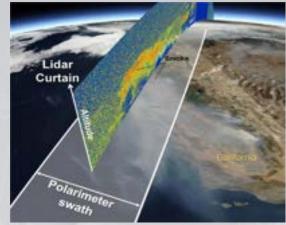
ATMOSPHERE OBSERVING SYSTEM

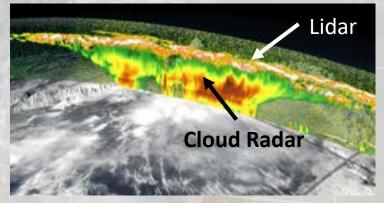
Science Impacts of Lidar Trades

Change	Summary	Science Priority	Science Impacts
Industry lidar	 CALIOP-like capability Target SNR for daytime equivalent to CALIOP nighttime SNR 	Medium	 Modest to significant increase in SNR due to lower altitude Potential enhancements within budget constraints
ASI CALIGOLA lidar	 ASI/NASA partnership for lidar Minimum 7 wavelength lidar (backscatter, depol at 355, 532, 1064 nm; extinction at 355 nm) Considering up to 12 channels for atmosphere-ocean-land measurements 	High	 Modest to significant increase in SNR due to lower altitude 3 backscatter and depol frequencies instead of 2 Nighttime (possibly daytime) extinction measurements for improved aerosol profiles and typing Capable of ocean and land/snowfall measurements to enable multi-disciplinary science Introduces science risk due to schedule and independent spacecraft

ATMOSPHERE OBSERVING SYSTEM

Science Impacts of Radar Trades


	Change	Summary	Science Priority	Science Addressed
Single	JPL or Industry W band	W-band radar for cloud profiling	High	Provides full cloud profiling with accurate Doppler information, cloud liquid water path
band	Industry Cloud- Profiling Ka band	Ka-band radar for cloud profiling	High	Provides full cloud profiling with accurate Doppler information, less attenuation at higher rainfall rates
Dual	JPL W, Ka band	Cloud profiling at W band, precipitation at Ka band	Highest	Added Ka band provides enhanced Doppler information, precipitation over broader range, and precipitation particle size information, cloud liquid water path
Dual band	Industry Ka, Ku/X band	Cloud profiling at Ka band, precipitation profiling at Ka and Ku/X band	High	Added Ku or X band provides enhanced Doppler information, precipitation over broader range, and precipitation particle size information, less attenuation at highest rainfall rates


Building An Observing System

- Factors shaping the architecture during architecture construction and concept development phases (ACCP)
 - Cost-capped mission that utilizes relatively mature measurement capabilities
 - Microphysical understanding requires synergistic multi-instrument approaches
 - International partnerships
 - Continuity desired (but not required) to the extent practical
 - Applications considered from early stages
- Completed Mission Concept Review, May 2022
- Independent Review Board (IRB) study August-September 2022
- Key Decision Point A review, January 13, 2023

Lidar+polarimeter synergy for aerosols: provides significant retrieval advances over lidar alone

Doppler radar+lidar+passive sensor synergy: adds dynamical information to cloud/precipitation profiling and passive properties