Air Pollution Exposure and Public Health

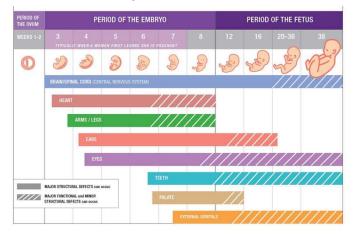
Needs and Opportunities for Remote Sensing Data Products

Rima Habre, ScD

Associate Professor Division of Environmental Health, Preventive Medicine Spatial Sciences Institute University of Southern California habre@usc.edu

NASA Aerosol and Clouds, Convection, and Precipitation (ACCP) Air Quality Workshop Environmental Epidemiology

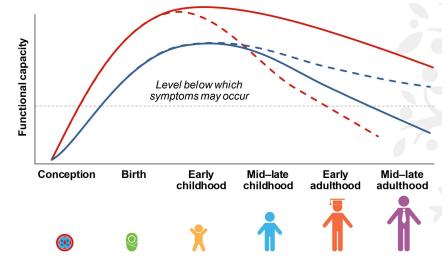
March 18, 2021


Introduction

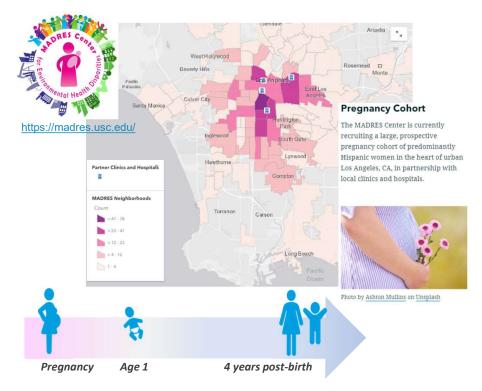
- Air pollution is a public health concern
 - Multiple endpoints, acute and chronic
- Generally difficult to assess exposure accurately, efficiently, and at high spatiotemporal resolution in epidemiological studies
 - Air pollution is complex (chemistry/size, phases, sources, mixtures)
 - Humans are complex (mobility, time-activity, behaviors)
- Goal in health studies is to estimate "true, personal" exposure in breathing zone
 - f(outdoor concentrations, human time-activity/mobility, building/home characteristics and indoor sources)

Chronic Disease Conceptual Models

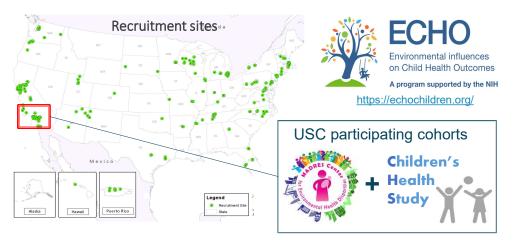
DOHaD HYPOTHESIS


- Critical prenatal/early life developmental periods
- Order of days to weeks

https://mothertobaby.org/wp-content/uploads/2020/02/Adapted-from-Moore-1993-and-the-National-Organization-of-Fetal-Alcohol-Syndrome-NOFAS-2009.-3.png


LIFE COURSE FRAMEWORK

- Early environmental exposures can have a lifetime impact
- Order of months to years



MADRES and ECHO Cohort Studies

Los Angeles pregnancy cohort, n~1,000, maternal and child health (2015-2025)

- Nationwide pediatric cohort, $n \sim 50,000$, children's health (2016-2023)
- Habre, Co-Chair Geospatial WG

(pregnancy)

Perinatal

(birth-6

weeks)

Infancv

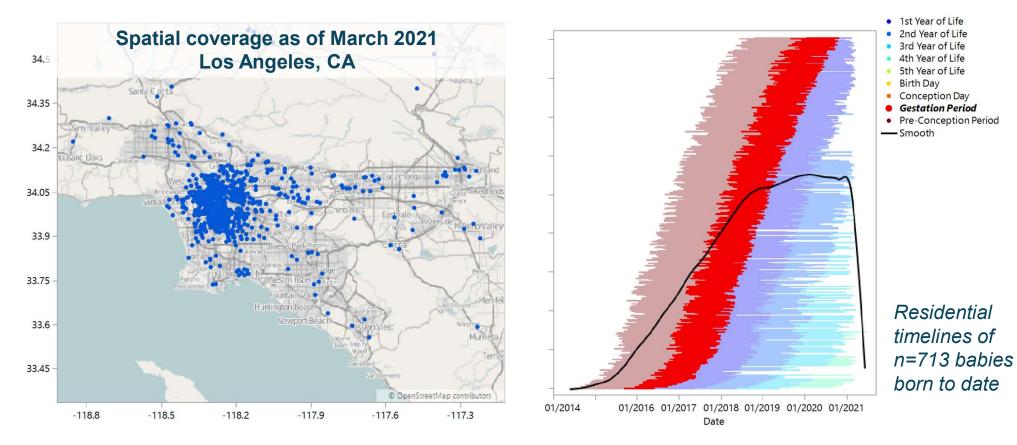
(6 weeks-1

year)

Early

childhood

(1-5 years)



Middle childhood (6-11 years)

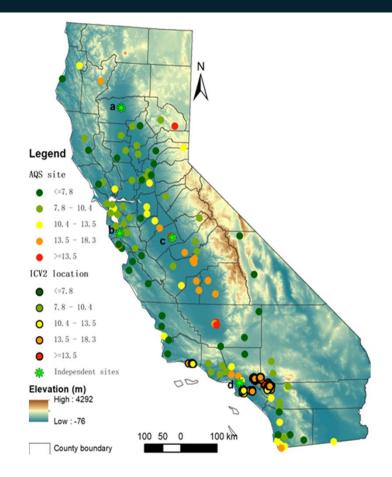
Adolescence (12-20 years)

MADRES Pregnancy Cohort Los Angeles, CA, more recent

Motivation for California PM_{2.5} Model

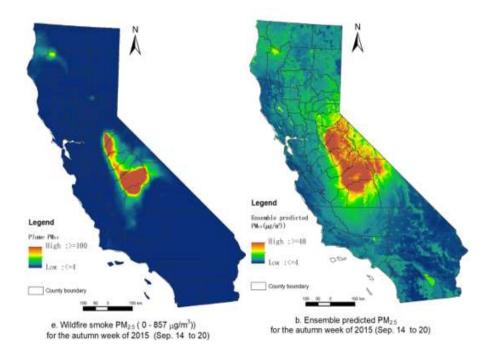
- To investigate PM_{2.5} health effects (total and wildfirerelated) in our MADRES and ECHO studies
- Wildfires increasingly frequent and widespread

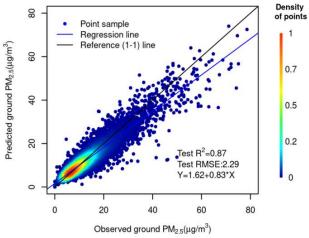
Environment International 145 (2020) 106143



Contents lists available at ScienceDirect

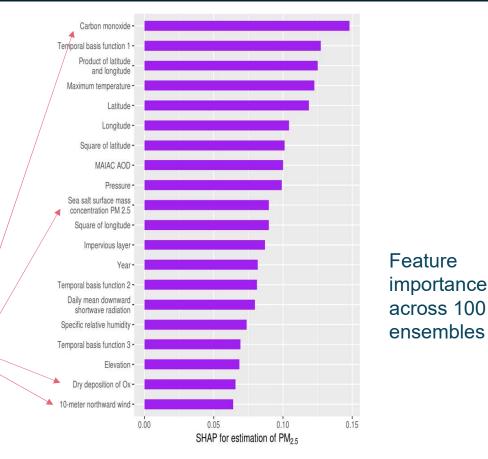
journal homepage: www.elsevier.com/locate/envint


Ensemble-based deep learning for estimating $PM_{2.5}$ over California with multisource big data including wildfire smoke


Lianfa Li ^{a, b,*}, Mariam Girguis ^a, Frederick Lurmann ^c, Nathan Pavlovic ^c, Crystal McClure ^c, Meredith Franklin ^a, Jun Wu ^d, Luke D. Oman ^e, Carrie Breton ^a, Frank Gilliland ^a, Rima Habre ^{a,*}

Model Overview

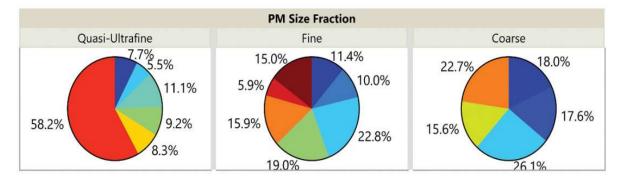
Weekly, 1KM² PM_{2.5} Model, 2008-2017, incorporating Wildfire Smoke Plumes



- Residual autoencoder and ensemble learning
 - Test R² 0.82, RMSE 2.70 µg/m³
- Measurements, remote sensing, M2GMI, dispersion models of wildfire smoke

Key Contributions of NASA Remote Sensing and Hindcast Simulation Data

- MAIAC AOD (1km²)
- M2GMI Replay Simulation
 - ~50km² AOD to impute missing MAIAC AOD
 - PBLH for AOD vertical adjustment
 - Wind speeds at 2m, 10m and 50m to calculate indicators of vertical stagnation and wind sheer/mechanical mixing
 - Gases and PM_{2.5} aerosol types in surface layer, highly important features


PM Composition and Sources

- Drive toxicity and health effects
- Size distribution
- Urban sources
 - Tailpipe and nontailpipe traffic
 - Airport-related UFPs

JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION 2021, VOL. 71, NO. 2, 209–230 https://doi.org/10.1080/10962247.2020.1826366	Taylor & Francis Taylor & Francis Group
	Check for updates

Contribution of tailpipe and non-tailpipe traffic sources to quasi-ultrafine, fine and coarse particulate matter in southern California

Rima Habre 😳^a, Mariam Girguis^a, Robert Urman^a*, Scott Fruin^a, Fred Lurmann^b, Martin Shafer^{cd}, Patrick Gorski^c, Meredith Franklin^a, Rob McConnell^a, Ed Avol^a, and Frank Gilliland^a

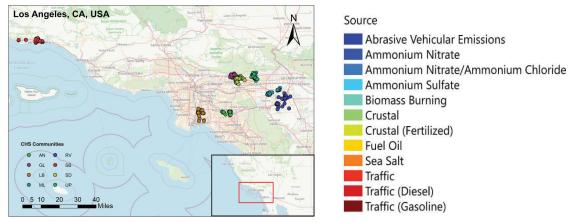
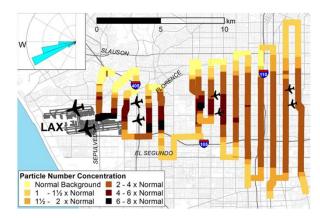
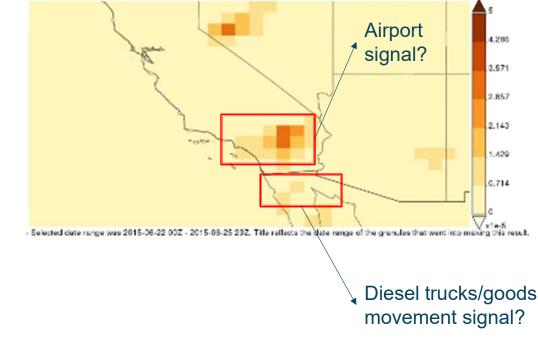



Figure 1. Map of CHS southern California communities participating in the ICV2 sampling campaign (AN = Anaheim, GL = Glendora, LB = Long Beach, ML = Mira Loma, RV = Riverside, SB = Santa Barbara, SD = San Dimas, UP = Upland).

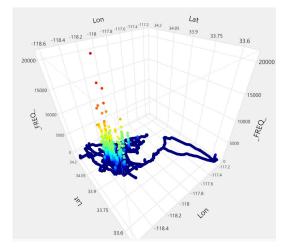
Airport-related UFPs, Acute Effects

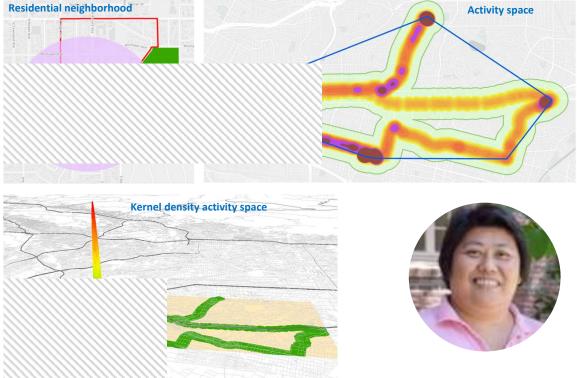
Hudda et al. (2014), Environmental Science & Technology, 48(12), 6628–6635.



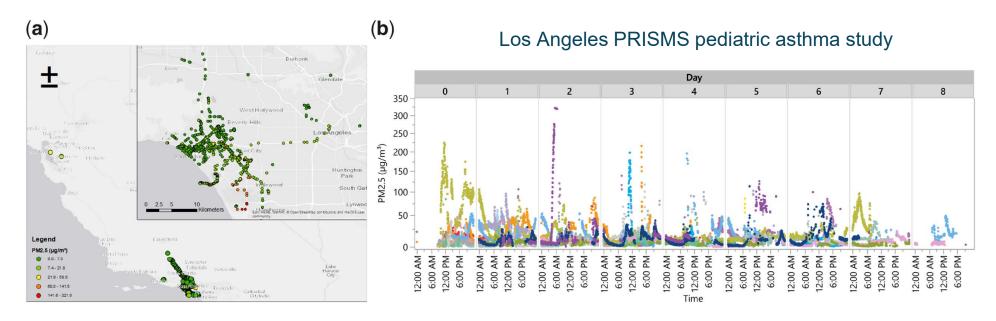
Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma

Rima Habre^{a,}*, Hui Zhou^a, Sandrah P. Eckel^b, Temuulen Enebish^a, Scott Fruin^a, Theresa Bastain^a, Edward Rappaport^a, Frank Gilliland^a


SO₂ column mass density from MERRA-2 over southern CA, few days in 2015


SO2 Column Mass Density (ENSEMBLE), time average hourly 0.5 x 0.625 deg. (MERRA-2 Model M2T1NXAER v5.12.4) kg m-2.2015-06-22100:30.00

Future Directions...


 Incorporating mobility and activity spaces into air pollution exposure assessment

Yan Xu, PHP doctoral candidate

Paired with Personal PM_{2.5} Monitoring

Figure 5. Examples of data collection from BREATHE. (A) Map of GPS trajectories across all subjects, correlated with 1-min PM_{2.5} concentrations. (B) Temporal variation in personal PM_{2.5} concentrations colored by subject. BREATHE: Biomedical REAI-Time Health Evaluation; GPS: global positioning system; PM: particulate matter.

Bui et al, JAMIA Open, 3(2), 2020

https://youtu.be/6y0tzsfApw4

Summary

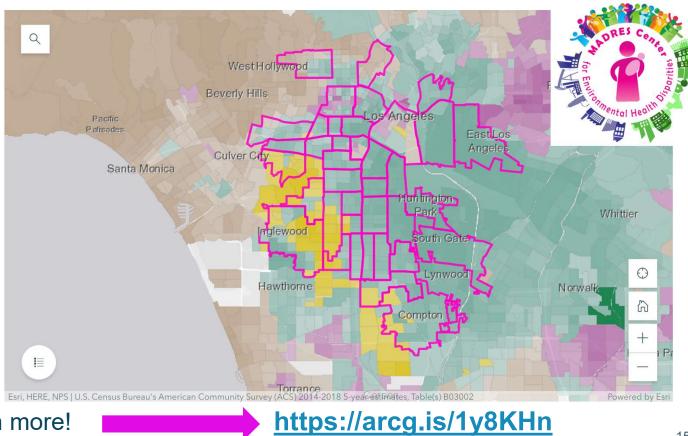
- Air pollution exposure and health research needs
 - Composition, size distribution, mixtures!
 - Remote sensing data products, especially hindcast simulations (gas and aerosol), incredibly useful
 - Enhance/expedite exposure modeling work, minimize lag time
 - Spatiotemporal coverage key (simulations)
 - Spatiotemporal resolution
 - Daily to hourly temporal resolution important for understanding acute effects
 - Spatial resolution increasingly important considering human activity spaces
 - Vertical resolution

Thank You

- habre@usc.edu
- LA DREAMERS USC ECHO Center
 - MPIs Breton, Bastain, Farzan, Habre
 - NIH UH3OD023287
- MADRES Center
 - MPIs Breton and Bastain
 - NIMHD/NIEHS P50MD015705
- Los Angeles PRISMS Center
 - PI Bui
 - U54EB022002

Visit our story map to learn more about MADRES! <u>https://arcg.is/1y8KHn</u>

MADRES Center of Excellence on Environmental Health Disparities Research


MADRES Neighborhoods

MADRES participants live in predominantly Hispanic and African American communities in Los Angeles, CA.

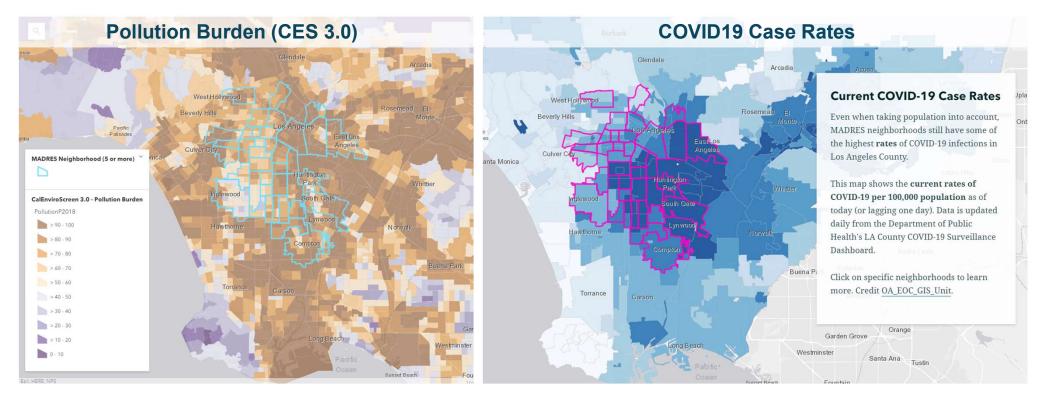


Photo by Viviana Rishe on Unsplash

Visit this story map to learn more!

Disproportionate Exposure to Pollution and Higher Susceptibility

Visit this story map to learn more!

