Very Brief Introduction to:
2017-2027 Decadal Survey for Earth Science and Applications from Space (“ESAS 2017”)

Bryan Duncan (GSFC), Ali Omar (LaRC), Amber Soja (LaRC), Aaron Naeger (MSFC), Melanie Follette-Cook (GSFC)
The consensus study had the primary goal to generate recommendations for the environmental monitoring and Earth science and applications communities for an integrated and sustainable approach to the conduct of the U.S. government’s civilian space-based Earth-system science programs – NASA, NOAA, USGS for – 2017-2027.

The study was organized by the National Academies of Sciences, Engineering, and Medicine, which produced the final report:

ESAS 2017: Recommendations

TABLE 3.3 Observing System Priorities—Observations (Targeted Observables)

<table>
<thead>
<tr>
<th>Targeted Observable</th>
<th>Science/Applications Summary</th>
<th>Candidate Measurement Approach</th>
<th>Designated Explorer</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosols</td>
<td>Aerosol properties, aerosol vertical profiles, and cloud properties to understand their effects on climate and air quality</td>
<td>Backscatter lidar and multichannel/multangle/polarization imaging radiometer flown together on the same platform</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Clouds, Convection, and Precipitation</td>
<td>Coupled cloud-precipitation state and dynamics for monitoring global hydrological cycle and understanding contributing processes, including cloud feedback</td>
<td>Dual-frequency radar, with multifrequency passive microwave and sub-mm radiometer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mass Change</td>
<td>Large-scale Earth dynamics measured by the changing mass distribution within and between Earth’s atmosphere, oceans, groundwater, and ice sheets</td>
<td>Spacecraft ranging measurement of gravity anomaly</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Surface Biology and Geology</td>
<td>Earth surface geology and biology, ground/water temperature, snow reflectivity, active geologic processes, vegetation traits, and algal biomass</td>
<td>Hyperspectral imagery in the visible and shortwave infrared; multi- or hyperspectral imagery in the thermal IR</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Surface Deformation and Change</td>
<td>Earth surface dynamics from earthquakes and landslides to ice sheets and permafrost</td>
<td>Interferometric Synthetic Aperture Radar (InSAR) with ionospheric correction</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Greenhouse Gases</td>
<td>CO₂ and methane fluxes and trends, global and regional with quantification of point sources and identification of sources and sinks</td>
<td>Multispectral shortwave IR and thermal IR sounders; or lidar*</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ice Elevation</td>
<td>Global ice characterization including elevation change of land ice to assess sea-level contributions and freeboard height of sea ice to assess sea ice/ocean/atmosphere interaction</td>
<td>Lidar*</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ocean Surface</td>
<td>Coincident high-accuracy currents and vector winds</td>
<td>Doppler scatterometer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ESAS 2017: Recommendations

A+CCP has the potential to provide more and better information to characterize the 3-D structure of aerosols within the boundary layer, including to infer surface PM$_{2.5}$ to enable numerous air quality and health applications.

TABLE 3.3 Observing System Priorities—Observations (Targeted Observables)

<table>
<thead>
<tr>
<th>Targeted Observable</th>
<th>Science/Applications Summary</th>
<th>Candidate Measurement Approach</th>
<th>Designated</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosols</td>
<td>Aerosol properties, aerosol vertical profiles, and cloud properties to understand their effects on climate and air quality</td>
<td>Backscatter lidar and multichannel/multitriangle/polarization imaging radiometer flown together on the same platform</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Clouds, Conv. & Precipitation</td>
<td>Coupled cloud-precipitation state and dynamics for monitoring global hydrological cycle and understanding contributing processes, including cloud feedback</td>
<td>Dual-frequency radar, with multifrequency passive microwave and sub-mm radiometer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mass Change</td>
<td>Large-scale Earth dynamics measured by the changing mass distribution within and between Earth’s atmosphere, oceans, groundwater, and ice sheets</td>
<td>Spacecraft ranging measurement of gravity anomaly</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Surface Biology & Geology</td>
<td>Earth surface geology and biology, ground/water temperature, snow reflectivity, active geologic processes, vegetation traits, and algal biomass</td>
<td>Hyperspectral imagery in the visible and shortwave infrared; multi- or hyperspectral imagery in the thermal IR</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Surface Deformation and Change</td>
<td>Earth surface dynamics from earthquakes and landslides to ice sheets and permafrost</td>
<td>Interferometric Synthetic Aperture Radar (InSAR) with ionospheric correction</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Greenhouse Gases</td>
<td>CO$_2$ and methane fluxes and trends, global and regional with quantification of point sources and identification of sources and sinks</td>
<td>Multispectral shortwave IR and thermal IR sounders; or lidar*</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ice Elevation</td>
<td>Global ice characterization including elevation change of land ice to assess sea-level contributions and freeboard height of sea ice to assess sea ice/ocean/ atmosphere interaction</td>
<td>Lidar*</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ocean Surface</td>
<td>Coincident high-accuracy currents and vector winds</td>
<td>Doppler scatterometer</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
ESAS 2017: Science & Applications Priorities

Why?

- **Goal: (W-5: MI)** "What processes** determine the spatiotemporal structure of important air pollutants and their concomitant adverse impact on human health, agriculture, and ecosystems?"

- **Objective: W-5a.** "Improve the understanding of the processes that determine air pollution distributions and aid estimation of global air pollution impacts on human health and ecosystems by reducing uncertainty to <10% of vertically resolved tropospheric fields (including surface concentrations) of speciated particulate matter (PM), ozone (O₃), and nitrogen dioxide (NO₂)."

- **Related to**
 - **(W-1: MI)** "What planetary boundary layer (PBL) processes are integral to the air-surface (land, ocean, and sea ice) exchanges of energy momentum, and mass, and how do these impact weather forecasts and air quality simulations?"
 - **(W-3: VI):** "Influence of Earth surface variations on weather and air quality."
 - **(W-6: I):** "Long-term air pollution trends and impacts."
 - **(C-5a: VI):** "C-5a. Improve estimates of the emissions of natural and anthropogenic aerosols and their precursors via observational constraints."

Processes include chemical and dynamic ones, such as boundary layer mixing & venting (+ W-1 & W-3 variables), emissions (C-5a), gas-to-particle conversion, long-range transport, etc.
Strong Applications Focus in ESAS 2017

Earth Information is Increasingly Critical to Thriving on our Planet

- Weather Forecasts, Modeling, Severe Weather Outlooks, Mitigating High Impact Events
- Exposure Estimates, Pollution Mitigation, AQ Forecasts
- Rainfall + Disease

The Importance of Earth Information

- Earth-observing satellites provide critical information about our planet. This information supports a broad range of societal needs and enables the scientific discovery required to meet these needs, making us all healthier, safer, and more efficient.

Helping Plan Our Day

- 300 billion weather forecasts used by Americans every year
- 100+ million Americans use internet-based mapping services

Protecting Our Health

- 6.5 million premature deaths from air pollution around the world every year
- 50% of the world’s population is at risk from malaria

Keeping Us Secure

- The estimated value of NASA and NOAA information services to the U.S. Navy’s operational effectiveness is $2 billion per year.
- The U.S. Navy and other U.S. defense agencies partner with NASA and NOAA to use satellite data, to access operational services, and to leverage their scientific progress.

Mitigating Natural Disasters

- Extreme weather and floods cost the federal government more than $350 billion over the past decade.
- Satellite measurements play a critical role in tracking the paths of hurricanes and wildfires so that we can warn populations, assess the damage, and assist recovery efforts.

Ensuring Resource Availability

- Advanced technology, including many types of Earth information, will unlock up to $1.6 trillion in economic savings for energy generation and use by 2035.
- Satellite observations can also help ensure water availability, which is particularly important to the 20% of the world facing chronic or acute water scarcity.

From Decadal Survey press conference, January 2018

National Defense, Mission Planning, Response

Floods, Drought, Wildfires, Volcanos, Landslides

Water Resources, Solar Energy
Enabling New Stakeholders: Gridded Products

How can the A-CCP design (e.g., orbit, sensor suite) facilitate the creation of Level 3 & 4 gridded products?

- Novice
- Intermediate
- Sophisticated

Gridded Rain Rate
Gridded Particulate Matter

- Novice (L3/L4) e.g., Operational Users, IBM
- Intermediate (L2-L4) e.g., Human Health, Private Industry, AQ Managers
- Sophisticated e.g., Big Data, Some Resource Managers, Modeling Communities
Enabling New Stakeholders: Gridded Products

Example: Randall Martin's Group at Dalhousie University created a Level 4 "nose-level" particulate matter (2.5 µm) product, which is being used by the health community for exposure assessments, etc.

Surface PM (1998-2016 Average)

Satellite Data (MODIS, MISR, SeaWiFS) + Atmospheric Model

Van Donkelaar et al. (2018)
Examples of AOD to PM Conversion

Global scale (10 km, temporally averaged)
e.g. Van Donkelaar et al., *Environ. Health Perspect.* [2015]

They infer PM$_{2.5}$ from a combination of passive satellite observations (from *SeaWIFS*, *MISR*, *MODIS*) and Chemistry Transport Model (*GEOS-Chem*)

Evaluation using ground stations outside Canada, US and Europe: significant agreement (R=0.81) but satellite derived PM2.5 is biased low

Urban scale (1-4 km)
e.g. Hu et al., *Remote Sens. Env.* [2014]

They infer PM$_{2.5}$ from *MODIS-MAIAC AOD*, a two-stage spatial statistical model, meteorological fields and land use parameters