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* Why is satellite remote sensing so useful for understanding health
impacts of air pollution?

* Tracking global air quality and climate change indicators
* Urban air quality and health
* “Natural” sources of PM, .

* Environmental justice: exposure between the monitors
* Epidemiology: understanding concentration-response relationships
* Limitations and future directions



Air pollution continues to be a leading health
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risk factor in nearly all countries

>90% of people worldwide live with PM, . concentrations

above the World Health Organization guideline 2019 rank
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Satellite remote sensing has transformed our ability to

understand air pollution disease burdens globally

Figure 17.1 Cities from which data on exposure to PM,, or TSP during

1985—-1999 are available from monitoring cites
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PM, . mortality in 250 cities worldwide
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New decision-support tool: Pathways-AQ
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ldentifying air pollution exposure inequities
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GeoHealth

RESEARCH ARTICLE

10.1029/2018GH000144

Key Points:

+ We provide the first estimates of
future smoke health and visibility
: .. a

Future Fire Impacts on Smoke Concentrations, Visibility,
and Health in the Contiguous United States

B. Ford' [}, M. Val Martin® (), 5. E. Zelasky® ('), E. V. Fischer' (), 5. C. Anenberg® ("),
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Key Points:

+ The NASA Health and Air Quality
Applied Science Team “Indicators™

Tiger Team developed

satellite-based air quality and

climate indicators

Participatory knowledge production

can lead to more useful information

for stakeholders but requires

continuous engagement and

Ground measurements are still
needed, and sustained collaboration
between the researchers and
stakeholders over time remains a
challenge
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Abstract The 2018 NASA Health and Air Quality Applied Science Team (HAQAST) “Indicators”
Tiger Team collaboration between NASA-supported scientists and civil society stakeholders aimed to
develop satellite-derived global air pollution and climate indicators. This Commentary shares our
experience and lessons learned. Together, the team developed methods to track wildfires, dust storms,
pollen counts, urban green space, nitrogen dioxide concentrations and asthma burdens, tropospheric
and urban particulate matter mortality. Participatory knowledge production can
lead to more actionable information but requires time, flexibility, and continuous engagement. Ground

ozone concentrations

measurements are still needed for ground truthing, and sustained collaboration over time remains a
challenge.

Plain Language Summary Recent advances in satellite remote sensing enable observation-based
tracking of climate change and air pollution with relatively high spatial resolution globally. The 2018 NASA
Health and Air Quality Applied Science Team (HAQAST) “Indicators” Tiger Team launched a collaboration
between ~20 NASA-supported scientists and civil society stakeholders to develop satellite-derived global air
pollution and climate indicators. This Commentary demonstrates the range of air quality and climate
change tracking uses for satellite data and shares our experience and lessons learned, which can inform
future problem-driven science-stakeholder collaborative efforts. Together, the team developed methods to
track wildfires, dust storms, pollen, urban green space, nitrogen dioxide concentrations and asthma burdens,
tropospheric ozone concentrations, and urban fine particulate matter mortality. Lessons learned include
that participatory knowledge production can lead to more actionable information for stakeholders but
requires time and dedicated attention. Stakeholder engagement is valuable at each stage, from developing
more nascent data sets to operationalizing mature data sets. Flexibility is critical, since stakeholder needs
evolve and new synergies emerge when there are engagements across a wide range of stakeholders and
teams. However, additional ground measurements are needed to ground truth satellite observations, and
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Slide courtesy Yang Liu
(speaking on Thursday!)

Satellite-based population direct
exposure to wildfire

Person-days expposed to
wildfire in 2019
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Ground Network

MODIS Dust

Slide courtesy Daniel Tong
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Health effects of air pollution: the knowns

A “Pyramid of Effects” from Air Pollution p|\/|2 : causal and |ike|y causal

A/ 0% o monsizd effects (U.S. EPA ISA 2020)
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The unknowns...
at HIGH and LO

oncentration-response relationships

concentrations
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response curves
3-4 million PM, . deaths
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Curves using ambient air
pollution studies only
8.9 million PM, . deaths
(more linear at high end)
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Considering concentrations < GBD

counterfactual (2.4-5.9 pg/m3)
10.2 million PM, ¢ deaths
(steep curve at low end)
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Health impact assessment

The burning of fossil fuels — especially coal, petrol, and diesel - is a major source of airborne fine particulate
matter (PM35), and a key contributor to the global burden of mortality and disease. Previous risk assessments
have examined the health response to total PMy s, not just PMy 5 from fossil fuel combustion, and have used a
concentration-response function with limited support from the literature and data at both high and low con-
centrations. This assessment examines mortality associated with PM 5 from only fossil fuel combustion, making
use of a recent meta-analysis of newer studies with a wider range of exposure. We also estimated mortality due to
lower respiratory infections (LRI) among children under the age of five in the Americas and Europe, regions for
which we have reliable data on the relative risk of this health outcome from PMz5 exposure. We used the
chemical transport model GEOS-Chem to estimate global exposure levels to fossil-fuel related PM» 5 in 2012,
Relative risks of mortality were modeled using functions that link long-term exposure to PM; 5 and mortality,
ing i i ity in the response. We estimate a global total of 10.2 (95% CI: —47.1 to
17.0) million premature deaths annually attributable to the fossil-fuel component of PMas. The greatest mor-
tality impact is estimated over regions with substantial fossil fuel related PMzs, notably China (3.9 million),
India (2.5 million) and parts of eastern US, Europe and Southeast Asia. The estimate for China predates sub-
stantial decline in fossil fuel emissions and decreases to 2.4 million premature deaths due to 43.7% reduction in
fossil fuel PMys from 2012 to 2018 bringing the global total to 8.7 (95% CI: —1.8 to 14.0) million premature
deaths, We also estimated excess annual deaths due to LRI in children (0-4 years old) of 876 in North America,
747 in South America, and 605 in Europe. This study demonstrates that the fossil fuel component of PMa 5
contributes a large mortality burden. The steeper concentration-response function slope at lower concentrations
leads to larger estimates than previously found in Europe and North America, and the slower drop-off in slope at
higher concentrations results in larger estimates in Asia. Fossil fuel combustion can be more readily controlled
than other sources and precursors of PMy 5 such as dust or wildfire smoke, so this is a clear message to poli-
cymakers and stakeholders to further incentivize a shift to clean sources of energy.

Vohra et al12021



The unknowns... health effects of air pollution mixtures,
interactive effects with other environmental risk factors
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Concluding thoughts

 Satellite remote sensing has transformed
environmental health surveillance capabilities

* Limitations of satellite data for health applications
» Temporal coverage/flyover time

* Spatial resolution

8
PM; 5 (ug/m?)

* Ability to discern components/mixtures

* There is still disagreement between surface
concentration estimates from different methods

Diao et al. 2019

* Some thoughts for future directions linetal. 2019

* Important to have continuous record of remote sensing
datasets

e Use remote sensing to screen areas for locating ground

monitors, integrating multiple datasets
14
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|[dentifying air pollution exposure inequities (NO,)
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Progression of satellite capabillities over time

TEM P O N 02 - TOPOMI NO, s OMI 2

2019 Annual

Goldberg et al. 2021
17



