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Outline

e The National Hurricane Center and the TC
forecast cycle

e Low earth orbiting satellite issues
e How AOS could help the NHC
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NHC Forecast Cycle

Time (HR : MIN) Event

Issue Tropical Weather Outlook
00:00 Issue Intermediate Public Advisory (if necessary)
Synoptic time [ cycle begins

00:45 Receive satellite fix data

01:00 Initialize models

01:10 Receive model guidance and prepare forecast
02:00 NWS / DOD hotline coordination

03:00 Advisory deadline

03:15 FEMA conference call

06:00 New cycle begins



Data NHC uses t0 track ..o oo omerson
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hurricanes

e Geostationary Satellites

e Low-Earth Orbiting
Satellites

e Reconnaissance Aircraft

e Surface observations

e Radar

20) radar animation courtesy of
Brian McNoldy

NOS Eugene Island
weather station




Making Hurricane
Forecasts

Every six hours, the NHC makes forecasts of the
expected position, intensity, and size of a tropical
cyclone out to five days, and to issue the
appropriate watches and warnings for winds and
storm surge.

Watches are usually issued for a region 48 hours
before the expected impacts start, with warnings
usually issued 36 hours before the impacts start.

The NHC also makes probabilistic forecasts of
when and where tropical cyclones may form.

These forecasts are based on guidance from
numerical weather prediction models of both the
cyclone and the environment, accompanied by
the forecaster’s knowledge and experience.




Forecast Cycle Begins
Questions Forecaster Must Answer

1. Where is the storm located?
- Latitude/Longitude
- From this motion can be
determined

2. How strong is the storm?
- Maximum sustained winds

3. How big is the storm?
- Extent of tropical-storm and hurricane-force winds

AOS data may help answer some of these questions and provide
valuable input to NWP models if it delivered timely.



=
Low Earth Orbiting Satellite Data Latency Issues

POES Data Latency

CIRA / NOAA

Data latency issues for LEO satellites make it more difficult for the data to neatly fit
the NHC 6-h advisory and modelling cycles. Data latency of more than 3 h
significantly decreases the real-time utility of the data.

Please make possible effort to get this data to
the forecasters and modelers in real time!
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Presenter Notes
Presentation Notes
Elapsed time or delay between satellite overpass and the availability of data from a processing center is referred to as data latency.  A delay in excess of 1 to 2 hr is unsatisfactory if it is too be useful for short-term forecasting as well as for the watch/warning process.  Satellite stores data until within transmission range of a ground receiving site.  Thus this is a function of communications delay and the satellite sensors.  GOES data – received almost the minute it’s collected.


“MW Sensors — Low Earth Orbiting Satellites Only. ®
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LS e Between antenna size and resolution issues,
- microwave (MW) imagers/ sounders/radars
fly only on low earth orbiting satellites.

e This allows only limited swaths of data and
AOS will fly in two orbits: Polar & Inclined reduce the temporal coverage of a given TC
from a given satellite.

e AOS constellation may somewhat help the
temporal coverage issue, but gaps will exist.


Presenter Notes
Presentation Notes
In order to pass over the same location local time each day, polar orbiters are put in a sun-synchronous orbit at 800 km orbit.  Satellite’s orbit remains fixed with the sun while the Earth rotates under the satellite.  Thus a specific satellite will pass over a given location at 6 am and 6 pm local time.  Coordination between agencies so that the number of passes per region is higher – not passing over the same point at the same time. Takes 12 hr for a single polar-orbiter to observe the entire Earth; they are in low Earth orbits so that they can collect sufficient amount of Earth-emitted radiation, a something a geostationary satellite at a higher altitude could not do.



Microwave Imagery Interpretatlon

MW Imagery can penetrate
through clouds and reveal TC
internal structure, including
convective bands, shear patterns,
eyewall formation, and eyewall
replacement cycles.

In many cases, MW imagery is
better at locating TC centers than
conventional visible and infrared

85-91 GHz MW Imagery is able to
distinguish deep convection, but
can not always see low-level clouds
that depict circulation centers.

The AOS microwave radiometer
does not have a 37 GHz channel
that NHC often uses for low
cloud/low-level center location and
RI potential. Is there an equivalent
channel on the satellites?

These data are used both
objectively and subjectively!

gery cou rtesy of
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GPM Observed Rainfall Rate

Th

TRM Precipitation Radar

Previously orbiting microwave sensors have given us both passive and active rainfall
rate information. Will the AOS instruments be able to do likewise?
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Winds from the Lidar and Doppler Radar"

« Operational satellite winds (also
known as Atmospheric Motion
Vectors) are computed from
displacement of targets on
successive geostationary images.
(Reference: Velden et al., BAMS,
1997)

- Satellite winds are used for analysis
as well as to initialize numerical
weather prediction models.

* Will the lidar and doppler radar on
the AOS satellites be able to sl
supplement the AMVs available from :..-
the geostationary satellites? Can s
they give us more detailed wind data
in and near the tropical cyclone?




Aerosols and Cloud
Microphysics

In analysis and forecasting, NHC o :} s

qualitatively uses aerosol _ o B

information through various types | .*‘ﬁ;..

of (geostationary) satellite _‘, A J,_g;g

imagery. X 4

Cloud microphysics data is used Both cour haj- ,J, ,ah,_'”
less frequently by the forecasters, 4 @_;,: |

although data that helps L & P
differentiate between convective [/
and non-convective (e. g. cirrus

debris) clouds could be useful.

NWP models could make use of
both aerosol and microphysical
data to improve TC forecasting,
especially the intensity.




Can we relate AOS to
geostationary data?

ABI/AHI-type data are available from
multiple satellites in 16 channels
with high spatial and very high
temporal resolution.

Can we relate the aerosol and
microphysical data in the AOS
shapshots to GEO data to use when
AOS data is not timely?

Table courtesy of Tim Schmit, CIMSS
GOES-16 Imagery below courtesy of CIMSS
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Conclusions and
Questions

The AOS constellation can provide useful =% -
MW radiometer data for NHC ol 'y
operations.

AOS data should be very useful for NWP
models.

Can we enhance atmospheric wind data
with the lidar and doppler radar?

Can some of the capabilities of the 37 .
GHz imagery be matched using the other =~ |
AOS channels? :

Like the GOES-R satellites, there will be a =%
learning curve for the capabilities and
limitations of AOS.
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NOAA Hurricane Research — Physical Processes
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The Challenge: Hurricane Intensity Forecasting

NHC 48-h Track & Intensity Forecast Errors

Mormalized 48-h NHC Official Track and Intensity Errors [1994-2018)
140
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* Track errors improved by 70%
* Intensity errors improved by 30%

NHC Intensity Forecast Errors — Rl vs. non-RI
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* Intensity errors 3X great for Rl storms
than non-RI storms
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. NOANS Atlantic Oceanagraphic

and HE[E'{II‘MCIQ!CN Latlmam"f NASA AOS Applications: Panel Seminar 2023
by April 6, 2023
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The Challenge: Hurricane Intensity Forecasting

Major physical processes in hurricanes

* Characterizing and understanding these
processes and their interactions, and how
they’re represented in numerical models,
are key steps in forecast improvement

Radiation

15 km

* Airborne and spaceborne observations
provide a unique opportunity to study

1km Precipitation, these processes across scales
microphysics,
aerosol interactions Turbulence, air-sea fluxes
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NOAA'’s Hurricane Field Program: APHEX

BAMS

Article

Accomplishments of NOAA's Airborne
Hurricane Field Program and a Broader Future
Approach to Forecast Improvement
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(Zawislak et al. 2022)

APHEX (Advancing the Prediction of Hurricanes Experiment)

Goal 1: Collect observations that span the TC life cycle in a

variety of environments for model initialization and
evaluation

Goal 2: Develop and refine measurement strategies and

technologies that provide improved real-time analysis of
TC intensity, structure, environment, and hazard
assessment

Goal 3: Improve the understanding of physical processes that

affect TC formation, intensity change, structure, and
associated hazards

* Emphasis here on physical processes (Goal 3)
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NOAA Hurricane Research Priorities

1. Intensity forecasting
* especially rapid intensification onset

2. Tropical cyclogenesis
* “pre-TC” advisories out to 7 days necessitates improved genesis forecasts

3. SAL/TC interactions
* important for both genesis and intensification

4. Hazards
* rainfall, also storm surge, winds, severe weather

* Work is ongoing in NOAA to address these priorities, but work would benefit
from NASA AOS
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Rapid Intensification onset

Vortex alignment and precipitation structure

Midlevel (5-km) winds from ground-based radar, low-level aircraft fixes for Sally (2020)
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(Stone et al. 2023)
® Development of an aligned vortex is a crucial step in Rl onset
® Low-level circulation (“%”) repositions toward midlevel circulation
(“M”), coincident with GLM-detected lightning
® TC intensifies (5 km winds increase)
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%] within 50 km
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Rapid Intensification onset

Vortex alignment and precipitation structure

a) Ground Radar YVertaity and 2-6 kom Tilt [lem]
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(Stone et al. 2023)

® Rapid tilt reduction and vortex amplification
starting 12 UTC

® Two cycles of deep convection in 12 h prior to
alignment

® Increase of moderate convection during 2d
cycle

® Increased coverage of stratiform precipitation
1-3 h after each cycle
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Rapid Intensification onset

Mass flux profiles and alignment

Dropsonde-derived profile HAirborne Doppler-derived profile
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* Vertical mass flux proportional to vertical velocity, a proxy for latent heating

* Profile peaks in lower troposphere, favors low-level convergence, vorticity stretching, alignment
* Profiles increase in magnitude during alignment period of both TCs

* Consistent relationship between mass flux profiles and alignment
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Tropical Cyclogenesis
P-3 flight track during pre-Earl P-3 radar-derived precipitation structure
r el ¥ o 102815 to 113526 LITC 125906 bo 142048 UTC
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* Extensive areas of deep convection, some moderate
convection

* Extensive cold cloud shield indicative of a mature

mesoscale convective system * Broad region of stratiform precipitation by later pass —
possible evolution (stratiform transition) of convective
system, or perhaps just sampling variability

* Mission sampled core of cloud shield over ~4 h period
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Tropical Cyclogenesis
P-3 radar-derived winds, vorticity during pre-Earl
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* Development of closed low-level circulation key step marking tropical cyclogenesis
* Midlevel circulation and vorticity maximum evident at this time, displaced about 30 km
ENE of elongated low-level circulation/shear axis (no closed low-level circulation yet)
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Tropical Cyclogenesis

16 -
14 1
12 4

G-1V dropsonde analysis-derived mass flux, vorticity
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Mass flux profile peaks at 10 km, local minimum at 4 km
Mass flux profile typical of stratiform precipitation

Vorticity profile peaked in midlevels (at 4 km). Consistent with TDR-
derived vorticity maximum 12 h previously

Ability to track midlevel circulation over time — still no closed low-level
circulation though
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Saharan Air Layer — Tropical Cyclone Interactions

Advancements in satellite sensors and products have significantly improved our monitoring of the SAL
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Saharan Air Layer — Tropical Cyclone Interactions

Tropical Storm Gonzalo: 22-26 July 20

20 Hurricane Dorian: 24-31 August
® A g e 7 W

s

e L3
v

* Gonzalo appeared to be interacting with the SAL early  ® Dorian appeared to be interacting with the SAL early in
in its lifecycle its lifecycle

* NHC: noted dry mid-level air likely inhibiting the storm  ® NHC: continuous intrusions of dry air might have

* NHC: enhanced vertical wind shear + dry air >> contributed to its ragged structure up to 24-27 Aug.

convective structure eroded before landfall in Trinidad  ® Dorian overcame a marginal environment: Rl on 31 Aug


Presenter Notes
Presentation Notes
Emphasis: NHC forecasters noted signs of SAL-TC interactions (e.g., arc clouds and ragged convection) for both storms, but Gonzalo & Dorian had very different outcomes.
It’s not always clear why one storm goes down the Gonzalo path while others take the Dorian road and fight off the SAL
Forecasters don’t always have the obs they need to make a confident assessment of exactly how mid level dry air is or isn’t getting in…it sometimes involves a bit of hand waving
This leads into the next slide and some of the knowledge gaps we still have re: SAL-TC interactions
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Microphysics studies

* GPS Dropsonde

I s -
[E} ‘ . fﬁ? . [h] () Stratiform Echo
7 ‘ -bn — ) Convective Echo
Iz 3

* P-3 Stratiform Spiral module: spiral ascent/descent
across the freezing level in the stratiform portion of a

primary rainband or MCS * Hurricane Teddy Cloud Imaging Probe (CIP)
* Microphysics measurements can help with rainfall, measurements of rain droplets, ice crystals, and
possibly intensity forecasts from numerical models snow. Hydrometeors transition from water to ice as

the P-3 flies through and above the freezing level.
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Knowledge gaps likely to be aided by NASA AOS
1.Intensity forecasting and RI onset

* What is dominant precipitation mode associated with vortex alignment?

® What governs latent heating, vertical velocity, and mass flux profiles (environmental vs. local processes)?
2 .Tropical cyclogenesis

* Importance of midlevel center in low-level center formation (spatiotemporal variability of precipitation structure )?
* What is role of SAL/aerosol interactions in precipitation structure and distribution?

3.SAL/TC interactions

¢ Are there different modes of SAL outbreaks that are more/less effective at suppressing TC intensity?

® How do convectively driven downdrafts resulting from SAL-TC interactions affect the TC environment, the
marine boundary layer, and what are the time scales for MBL recovery?

®* How does Saharan dust impact static stability in TC environment (warming, enhanced convective inhibition)?

4 .Hazards/Rainfall

* What are key microphysical processes in hurricane environment, and how do they differ from other
environments?
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THANK YOU

QUESTIONS?

ﬁobe Rogers@noaa.gov

-
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Tropical Cyclogenesis
Sequence of aircraft missions into pre-Earl (2022)
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Relevant processes likely to be aided by NASA AOS

1. Intensity forecasting and Rl onset

* vortex alignment, convective/precipitation structure, latent heating/vertical
velocity/mass flux profiles, microphysics

2. Genesis

* convective/precipitation structure, latent heating profiles/microphysics,
SAL/aerosol interactions

3. Hazards - Rainfall
* microphysics important for rainfall, possibly intensity forecasting
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Utilizing Observations, iy
DA, & Models to SRR
Accelerate Hurricane SR
Research & Prediction

| Frank\la_rks @



Presenter Notes
Presentation Notes
https://www.aoml.noaa.gov/hrd/people/frankdmarks/
https://orcid.org/0000-0003-0371-5514
https://publons.com/researcher/1363165/frank-d-marks-jr/
https://scholar.google.com/citations?user=gXufCOIAAAAJ
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Mission

Advance understanding & prediction of tropical cyclone (TC) i
track, intensity, & structure change & their impacts ut izing .
\ observations, numerical models, & theory,l iR 1

ey \ NOAA'’s hurricane research focus for >65 ,‘y\earsgﬁ ‘;* ’ LS
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Presenter Notes
Presentation Notes
HRD research supports NOAA's Strategic Plan:
Weather Act
Reduce the impact of extreme weather and water events
HRD research supports OAR’s Strategic Plan:
Make Forecasts  Better
Improve accuracy of weather, water, ocean, and climate forecasts and predictions to support a vibrant economy and save lives and property. 
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Current State of the Art

Operational Forecast Performance

NHC Official Average Track Errors

_Atlantic Basin Tropical Storms and Hurricanes
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Courtesy John Cangialosi & James Franklin (NWS/NHC)
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Presenter Notes
Presentation Notes
Track: Gain 1 day in forecast every decade
Intensity: Big jump in intensity forecast after 2009 -> HFIP?
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@ Hurricane Forecast Improvement Program
e Unified approach to guide & IP!:::‘;*:éi?“afJéém & &
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Presentation Notes
Gall, R., J. Franklin, F. D. Marks, E. N. Rappaport, F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329–343 doi: https://dx.doi.org/10.1175/BAMS-D-12-00071.1. 

Hurricane Forecast Improvement Program (HFIP) began in 2009 and has significantly improved forecast performance for the last 10 years, while meeting the 5-year goal to reduce track and intensity errors by 20 percent 
HFIP provides the unifying organizational infrastructure and funding for NOAA and other agencies to coordinate the research needed to significantly improve guidance for TC track, intensity, and storm-surge forecasts, as well as accelerate the transition of R2O 
HFIP focuses activities to research, develop, demonstrate, and implement enhanced operational modeling capabilities, dramatically improving the numerical forecast guidance made available to the National Hurricane Center. 
HFIP facilitates the development of the next generation of tropical cyclone (TC) researchers for NOAA.
HFIP will build upon the original goals of the program through the following specific goals:
Reduce numerical forecast guidance errors, including during rapid intensification, by 50 percent from 2017;
Produce 7-day forecast guidance that is similar to the 2017 5-day forecast guidance;
Improve guidance on pre-formation disturbances, including genesis timing, and track and intensity forecasts, by 20 percent from 2017; and 
Improve hazard guidance and risk communication, based on social and behavioral science, to modernize the TC product suite (i.e., products, information, and services) for actionable lead times for storm surge and all other threats. http://www.hfip.org/ 
Percent improvement is determined by evaluating track, intensity, storm size, and rapid intensification error relative to those over the 3-year period, 2015-2017

http://www.hfip.org/
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Advance understanding and prediction of TCs through observations, numerical models, and theory, with emphasis on processes within inner part of storm. HRD research supports AOML and NOAA's Strategic Plan:
Goal 1: Characterize, understand, and predict physical processes important to prediction of TC track, intensity, and structure change and their impacts.
Goal 2: Optimize the use of current and proposed observations to improve global and TC forecast guidance.
Goal 3: Advance TC forecast guidance by creating and verifying the next generation numerical models, and advancing DA techniques in support of NOAA’s UFS.
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@ Advancing Prediction of Hurricanes Experiment

1) Collect observations over /R - ot i &
TC's life cycle

2)Develop measurement Hurricane Field Program
technologies to improve W 1.

situation awareness

3) Improve understanding of
physical processes
affecting TC formation, e e e e e e
Intensity change, structure, 5 - 3 3 g4
& associated hazards

https://www.aoml.noaa.gov/2022-hurricane-field-program/
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Rogers, R., and Coauthors, 2006: The Intensity Forecasting Experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 1523–1537. doi: https://doi.org/10.1175/BAMS-87-11-1523
Rogers, R., and Coauthors, 2013: NOAA's Hurricane Intensity Forecasting Experiment (IFEX): A Progress Report, Bull. Amer. Meteor. Soc., 94, 859–882. doi: https://dx.doi.org/10.1175/BAMS-D-12-00089.1.
Zawislak, J., and Coauthors, 2022: Accomplishments of NOAA’s Airborne Hurricane Field Program and a Broader Future Approach to Forecast Improvement, Bull. Amer. Meteor. Soc., , 103, E311-E338. doi: https://doi.org/10.1175/BAMS-D-20-0174.1

 AOML/HRD provides operational support for G-IV surveillance (1 person) and WP-3D reconnaissance Tail Doppler Radar (TDR) (4 people) missions despite transitioning activities to operations. HRD augments AOC staff by providing meteorological expertise for data QC.

https://www.aoml.noaa.gov/2022-hurricane-field-program/
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Collect Observations Over TC's Life-Cycle

=

20220917N1 (N49)
NHC Syn Surv

20220918N1 (N49)

NHC Syn Surv 20220917H1 (N42)

EMC-NHC TDR

20220920N1 (N49)
NHC Syn Surv

2022091911 (N43)
EMC-NHC TDR

20220918H1 (N42)
EMC-NHC TDR

20220920H1 (N42)
EMC-NHC TDR

2022092011 (N43) .
EMC-NHC TDR ALO7/Fiona

2022092111 (N43) 16-21 September 2022
EMC-NHC TDR |
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Provide High-Quality Observations

Hurricane Dorian at ~1324 UTC 1 September 2019
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Courtesy Michael Fischer (HRD/CIMAS)

https://www.aoml.noaa.gov/hrd/Storm_pages/dorian2019/mission.html https://www.aoml.noaa.gov/dynamics-and-physics/
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Example of flight�tail doppler data - 3D view of storm, windfield

https://www.aoml.noaa.gov/our-research/hurricane-research-division/
https://www.aoml.noaa.gov/our-research/hurricane-research-division/hurricane-field-program/
Dynamics and Physics – NOAA's Atlantic Oceanographic and Meteorological Laboratory

https://www.aoml.noaa.gov/hrd/Storm_pages/dorian2019/mission.htmlgram-data/
https://www.aoml.noaa.gov/dynamics-and-physics/
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Initialize Hurricane Models

Hurricane lan 26 September 2022

Hurricane Data

Flight Data by Storm & Year
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Basin-Scale HWRF
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https://www.emc.ncep.noaa.gov/gc_wmb/vxt/HATCF/
https://www.aoml.noaa.gov/data-products/#hurricanedata
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HAFS: Moving Nests in Global FV3

Courtesy Bill Ramstrom (AOML/HRD)
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https://hfip.org/hafs
https://www.aoml.noaa.gov/hurricane-modeling-prediction
https://storm.aoml.noaa.gov/basin/?projectName=BASIN
https://www.emc.ncep.noaa.gov/gc_wmb/vxt/HWRF/index.php
https://www.emc.ncep.noaa.gov/HAFS/HAFSv0p2a/index.php



Py N AEDP, NoAxs Aantic Oceanographic o |
: and H'?l'?ﬂl'ﬂlﬂﬂ!ﬁﬂ' Latll:"31|:l"f NASA AOS Applications: Panel Seminar 2023 Marks — 4/6/2023

44

Observations-Based Model Physics

Evaluate & modify PBL & microphysics schemes based on P-3 observations
& LES for improved prediction of TC structure & intensity change.
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Dropsonde Impacts in HWRF

DIRECT IMPACT BY INITIAL CLASSIFICATION
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Courtesy Sarah Ditchek & Jason Sippel (AOML/HRD)
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Optimize use of Satellite Observations to
Improve Analysis & Forecasts
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Use OSSE/OSE & P-3/G-IV flights with satellite overpasses to aid evaluation & validation
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http://www.hfip.org/
https://noaahrd.wordpress.com/
https://www.aoml.noaa.gov/hurricane-research-division/
https://www.reddit.com/r/science/comments/53ydgr/science_ama_series_hi_reddit_we_are_dr_frank/
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