Atmosphere Observing System



#### **AOS Cloud-Sensitive Radar Status**

AOS Community Forum, May 17, 2023

Matt L. Walker McLinden/GSFC, RF Payload Systems Engineer Jeff Piepmeier/GSFC, Deputy Project Manager Scott Braun/GSFC, Project Scientist

Pavlos Kollias/Stoney Brook University, AOS Radar Working Group

Walt Petersen/MSFC, AOS Radar Working Group

AOS Reviewed – Not Subject to Export Control









Cloud Radar Performance Targets

Single-Frequency Cloud Radar Concepts

Simulated Data

Summary

Atmosphere Observing System

## Target and Minimum Radar Capabilities



The project based target performance on the SATM from MCR, reduced to a single frequency.

Target

Minimum

The targets are written to be **frequency-agnostic**.

Requirements are not finalized until SRR.

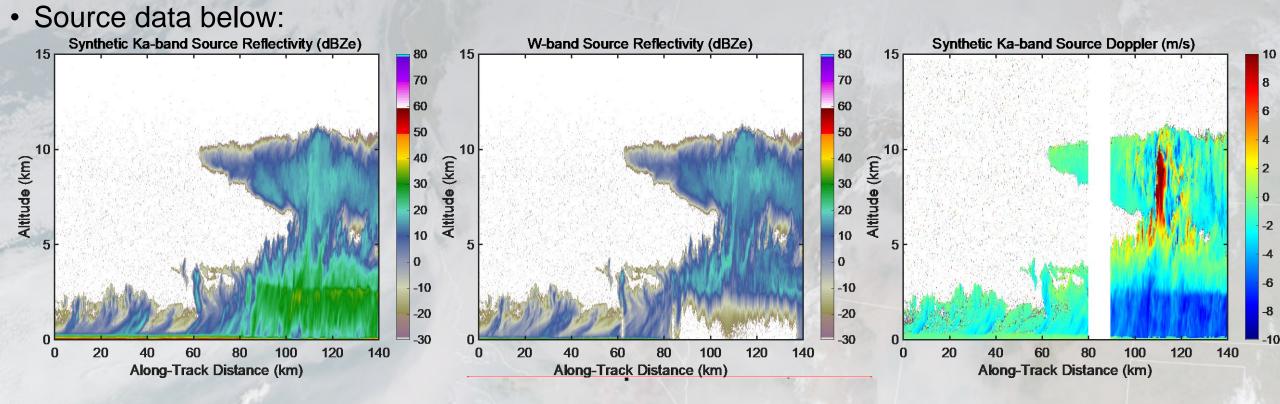
Project is studying potential enhancements, including a second frequency, narrow swath, brightness temperature measurements, and LDR.

| S            | Radar<br>Observable                                                           | Altitude                                                              | Sensitivity                                                | Uncertainty           | Horizontal<br>Resolution<br>(sampling)                    | Vertical<br>Resolution                                                                     | Swath          |
|--------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|-----------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|
| Capabilities | Equivalent<br>Reflectivity<br>Factor (dBZe)                                   | 6 to 20 km                                                            | -24 dBZe                                                   |                       | 2 km<br>(1 km)                                            | 500 m                                                                                      | Nadir          |
|              |                                                                               | 2.5 to 6 km                                                           | -20 dBZe                                                   | 1.5 dB                |                                                           | 500 m                                                                                      |                |
|              |                                                                               | 1 to 2.5 km                                                           | -15 dBZe                                                   | 1.5 08                |                                                           | 300 m                                                                                      |                |
|              |                                                                               | 0.5 to 1 km                                                           | -5 dBZe                                                    |                       |                                                           | 300 m                                                                                      |                |
|              | Vertical Doppler<br>Velocity (m/s)                                            | 6 to 20 km                                                            | Reflectivity<br>SNR>0 dB<br>single-shot                    | 0.5 m/s               | 2 km<br>(1 km)                                            | 500 m                                                                                      | Nadir          |
|              |                                                                               | 2.5 to 6 km                                                           |                                                            |                       |                                                           | 500 m                                                                                      |                |
|              |                                                                               | 1 to 2.5 km                                                           |                                                            |                       |                                                           | 300 m                                                                                      |                |
|              |                                                                               | 0.5 to 1 km                                                           |                                                            |                       |                                                           | 300 m                                                                                      |                |
|              |                                                                               |                                                                       |                                                            |                       |                                                           |                                                                                            |                |
| S            | Radar<br>Observable                                                           | Altitude                                                              | Sensitivity                                                | Uncertainty           | Horizontal<br>Resolution<br>(sampling)                    | Vertical<br>Resolution                                                                     | Swath          |
| ties         | Observable                                                                    | Altitude<br>6 to 20 km                                                | Sensitivity<br>-20 dBZe                                    | Uncertainty           | Resolution                                                |                                                                                            | Swath          |
| ilities      | Observable<br>Equivalent                                                      |                                                                       |                                                            |                       | Resolution<br>(sampling)<br>2.5 km                        | Resolution                                                                                 |                |
| hilities     | Observable                                                                    | 6 to 20 km                                                            | -20 dBZe                                                   | Uncertainty<br>1.5 dB | Resolution<br>(sampling)                                  | Resolution<br>500 m                                                                        | Swath<br>Nadir |
| pabilities   | Observable<br>Equivalent<br>Reflectivity                                      | 6 to 20 km<br>2.5 to 6 km                                             | -20 dBZe<br>-13 dBZe                                       |                       | Resolution<br>(sampling)<br>2.5 km                        | Resolution<br>500 m<br>500 m                                                               |                |
| Capabilities | Observable<br>Equivalent<br>Reflectivity                                      | 6 to 20 km<br>2.5 to 6 km<br>1 to 2.5 km                              | -20 dBZe<br>-13 dBZe<br>-8 dBZe<br>+2 dBZe                 |                       | Resolution<br>(sampling)<br>2.5 km                        | Resolution           500 m           500 m           300 m                                 |                |
| Capabilities | Observable<br>Equivalent<br>Reflectivity<br>Factor (dBZe)<br>Vertical Doppler | 6 to 20 km<br>2.5 to 6 km<br>1 to 2.5 km<br>0.5 to 1 km               | -20 dBZe<br>-13 dBZe<br>-8 dBZe<br>+2 dBZe<br>Reflectivity | 1.5 dB                | Resolution<br>(sampling)<br>2.5 km<br>(1.25 km)<br>2.5 km | Resolution           500 m           500 m           300 m           300 m                 | Nadir          |
| Capabilities | Observable<br>Equivalent<br>Reflectivity<br>Factor (dBZe)                     | 6 to 20 km<br>2.5 to 6 km<br>1 to 2.5 km<br>0.5 to 1 km<br>6 to 20 km | -20 dBZe<br>-13 dBZe<br>-8 dBZe<br>+2 dBZe                 |                       | Resolution<br>(sampling)<br>2.5 km<br>(1.25 km)           | Resolution           500 m           500 m           300 m           300 m           500 m |                |





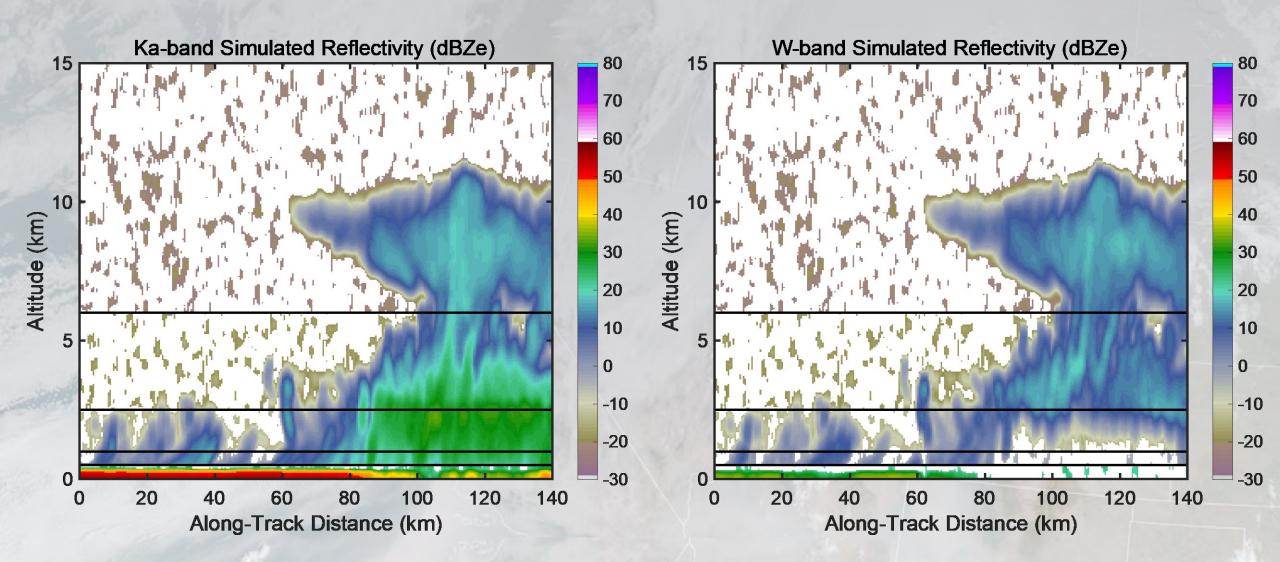
- Displaced Phase Center Antenna (DPCA) W-band Doppler Radar
   This is the underlying concept of the DORA instrument from the AOS Mission Concept Review (MCR) in May 2022.
  - Two antennas counteract spacecraft movement for high-quality Doppler data.
- Large (3-4+ meter) fixed W-band single-aperture Doppler radar.
   A large aperture is required to mitigate spacecraft spacecraft movement for high-quality Doppler data.
- Large (6-8+ meter) deployable Ka-band single-aperture Doppler radar.


   At Ka-band, a very large deployable antenna is required for sensitivity and to
   mitigate spacecraft movement for high-quality Doppler data.



### Simulated Data




- The next two slides show simulated Ka- and W-band data with target performance.
   Data derived from the NASA W-band Cloud Radar System (CRS) and the Ka-band High Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) (IMPACTS 2023 Campaign)
- Altitudes associated with performance break-points shown with horizontal lines

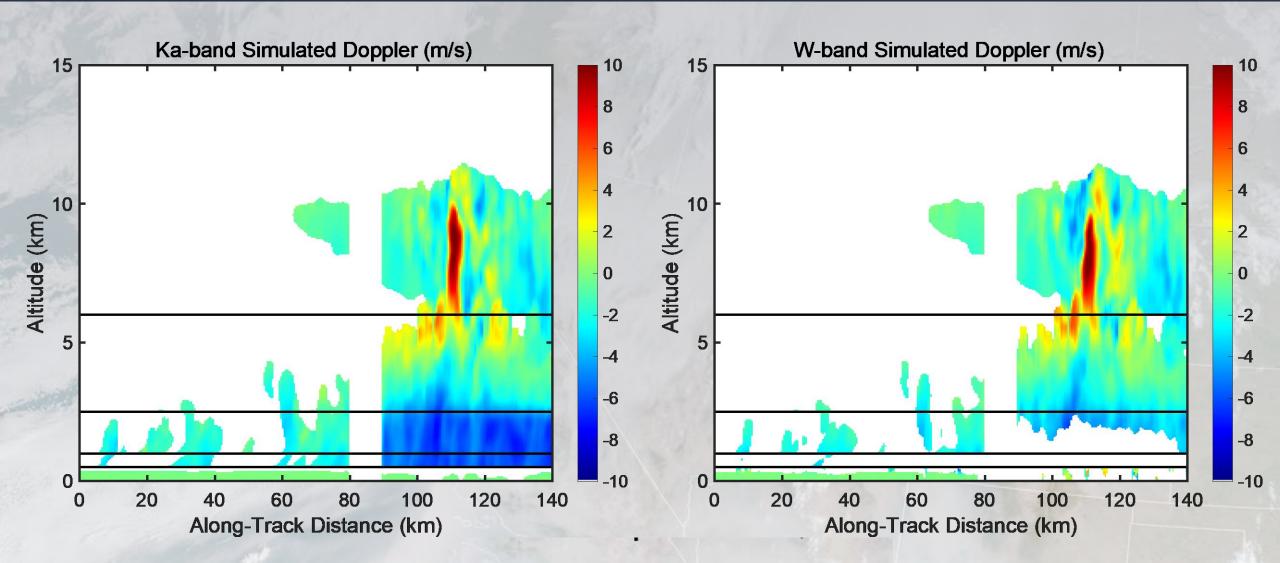




## Simulated Data: Ka- vs W-band Reflectivity






Pre-Decisional – AOS is in Phase A and NASA makes no commitments on the final design of the mission or instruments

6



# Simulated Data: Ka- vs W-band Doppler







### **Cloud-Sensitive Radar Summary**



- Assuming identical performance requirements:
  - Ka-band will have less attenuation, better charaterization of precipitation, less multiple scattering.
  - W-band will enable superior estimates of total liquid water path over oceans using the column integrated hydrometeor attenuation estimate (PIA).
- Detailed investigation of Doppler performance ongoing in the AOS radar working group (GSFC, MSFC, JPL, Aerospace, university).
- Potential enhancements include adding a second frequency, narrow swath, radiometric brightness temperatures, and linear depolarization ratio (LDR).