The NASA Earth System Observatory—Atmosphere Observing System (AOS): Future Space-Based and Suborbital Observations for the Study of Coupled Aerosol-Cloud-Precipitation Interactions

Scott A. Braun, NASA, Greenbelt, MD; and J. E. Yorks, T. J. Thorsen, and D. J. Cecil
[09-Jan-2023] Abstract  NASA's future Earth System Observatory (ESO) will provide key information related to understanding climate change processes, mitigating natural hazards, fighting forest fires, and improving real-time agricultural processes. The Atmosphere Observing System (AOS) constellation is a key component of the ESO, providing the atmospheric part of the ESO and focusing on two of the five designated observables from the 2017 NASA Earth Science Decadal Survey: aerosols and clouds, convection, and precipitation (CCP). AOS is made up of two projects, one in an inclined orbit (referred to as AOS-I) and the other in a polar, sun synchronous orbit (AOS-P), with both projects addressing synergistic aerosol and CCP science. The constellation is expected to deliver a comprehensive suite of observations to address coupled aerosol-cloud-precipitation interactions, with science objectives focused on low and high cloud feedbacks; the dynamics and structure of convective systems and properties of the aerosol environment; phase partitioning and precipitation formation in frozen and mixed-phase clouds; aerosol microphysical and optical properties, aerosol sources, and relationships to air quality; aerosol vertical redistribution and processing by clouds and precipitation; and aerosol direct and indirect effects. AOS-I and AOS-P are expected to launch no earlier than July 2028 and December 2030, respectively. This talk will describe the science objectives of AOS and the mission architecture and measurement capabilities.